Abstract:Despite the growing interest in leveraging Large Language Models (LLMs) for content analysis, current studies have primarily focused on text-based content. In the present work, we explored the potential of LLMs in assisting video content analysis by conducting a case study that followed a new workflow of LLM-assisted multimodal content analysis. The workflow encompasses codebook design, prompt engineering, LLM processing, and human evaluation. We strategically crafted annotation prompts to get LLM Annotations in structured form and explanation prompts to generate LLM Explanations for a better understanding of LLM reasoning and transparency. To test LLM's video annotation capabilities, we analyzed 203 keyframes extracted from 25 YouTube short videos about depression. We compared the LLM Annotations with those of two human coders and found that LLM has higher accuracy in object and activity Annotations than emotion and genre Annotations. Moreover, we identified the potential and limitations of LLM's capabilities in annotating videos. Based on the findings, we explore opportunities and challenges for future research and improvements to the workflow. We also discuss ethical concerns surrounding future studies based on LLM-assisted video analysis.
Abstract:Can we preserve the accuracy of neural models while also providing faithful explanations? We present wrapper boxes, a general approach to generate faithful, example-based explanations for model predictions while maintaining predictive performance. After training a neural model as usual, its learned feature representation is input to a classic, interpretable model to perform the actual prediction. This simple strategy is surprisingly effective, with results largely comparable to those of the original neural model, as shown across three large pre-trained language models, two datasets of varying scale, four classic models, and four evaluation metrics. Moreover, because these classic models are interpretable by design, the subset of training examples that determine classic model predictions can be shown directly to users.