Abstract:Real-world datasets commonly exhibit noisy labels and class imbalance, such as long-tailed distributions. While previous research addresses this issue by differentiating noisy and clean samples, reliance on information from predictions based on noisy long-tailed data introduces potential errors. To overcome the limitations of prior works, we introduce an effective two-stage approach by combining soft-label refurbishing with multi-expert ensemble learning. In the first stage of robust soft label refurbishing, we acquire unbiased features through contrastive learning, making preliminary predictions using a classifier trained with a carefully designed BAlanced Noise-tolerant Cross-entropy (BANC) loss. In the second stage, our label refurbishment method is applied to obtain soft labels for multi-expert ensemble learning, providing a principled solution to the long-tail noisy label problem. Experiments conducted across multiple benchmarks validate the superiority of our approach, Label Refurbishment considering Label Rarity (LR^2), achieving remarkable accuracies of 94.19% and 77.05% on simulated noisy CIFAR-10 and CIFAR-100 long-tail datasets, as well as 77.74% and 81.40% on real-noise long-tail datasets, Food-101N and Animal-10N, surpassing existing state-of-the-art methods.
Abstract:Traditional crowd counting networks suffer from information loss when feature maps are downsized through pooling layers, leading to inaccuracies in counting crowds at a distance. Existing methods often assume correct annotations during training, disregarding the impact of noisy annotations, especially in crowded scenes. Furthermore, the use of a fixed Gaussian kernel fails to account for the varying pixel distribution with respect to the camera distance. To overcome these challenges, we propose a Scale-Aware Crowd Counting Network (SACC-Net) that introduces a ``scale-aware'' architecture with error-correcting capabilities of noisy annotations. For the first time, we {\bf simultaneously} model labeling errors (mean) and scale variations (variance) by spatially-varying Gaussian distributions to produce fine-grained heat maps for crowd counting. Furthermore, the proposed adaptive Gaussian kernel variance enables the model to learn dynamically with a low-rank approximation, leading to improved convergence efficiency with comparable accuracy. The performance of SACC-Net is extensively evaluated on four public datasets: UCF-QNRF, UCF CC 50, NWPU, and ShanghaiTech A-B. Experimental results demonstrate that SACC-Net outperforms all state-of-the-art methods, validating its effectiveness in achieving superior crowd counting accuracy.
Abstract:Change detection (CD) aims to find the difference between two images at different times and outputs a change map to represent whether the region has changed or not. To achieve a better result in generating the change map, many State-of-The-Art (SoTA) methods design a deep learning model that has a powerful discriminative ability. However, these methods still get lower performance because they ignore spatial information and scaling changes between objects, giving rise to blurry or wrong boundaries. In addition to these, they also neglect the interactive information of two different images. To alleviate these problems, we propose our network, the Scale and Relation-Aware Siamese Network (SARAS-Net) to deal with this issue. In this paper, three modules are proposed that include relation-aware, scale-aware, and cross-transformer to tackle the problem of scene change detection more effectively. To verify our model, we tested three public datasets, including LEVIR-CD, WHU-CD, and DSFIN, and obtained SoTA accuracy. Our code is available at https://github.com/f64051041/SARAS-Net.
Abstract:We develop a Synthetic Fusion Pyramid Network (SPF-Net) with a scale-aware loss function design for accurate crowd counting. Existing crowd-counting methods assume that the training annotation points were accurate and thus ignore the fact that noisy annotations can lead to large model-learning bias and counting error, especially for counting highly dense crowds that appear far away. To the best of our knowledge, this work is the first to properly handle such noise at multiple scales in end-to-end loss design and thus push the crowd counting state-of-the-art. We model the noise of crowd annotation points as a Gaussian and derive the crowd probability density map from the input image. We then approximate the joint distribution of crowd density maps with the full covariance of multiple scales and derive a low-rank approximation for tractability and efficient implementation. The derived scale-aware loss function is used to train the SPF-Net. We show that it outperforms various loss functions on four public datasets: UCF-QNRF, UCF CC 50, NWPU and ShanghaiTech A-B datasets. The proposed SPF-Net can accurately predict the locations of people in the crowd, despite training on noisy training annotations.