Abstract:For speech classification tasks, deep learning models often achieve high accuracy but exhibit shortcomings in calibration, manifesting as classifiers exhibiting overconfidence. The significance of calibration lies in its critical role in guaranteeing the reliability of decision-making within deep learning systems. This study explores the effectiveness of Energy-Based Models in calibrating confidence for speech classification tasks by training a joint EBM integrating a discriminative and a generative model, thereby enhancing the classifiers calibration and mitigating overconfidence. Experimental evaluations conducted on three speech classification tasks specifically: age, emotion, and language recognition. Our findings highlight the competitive performance of EBMs in calibrating the speech classification models. This research emphasizes the potential of EBMs in speech classification tasks, demonstrating their ability to enhance calibration without sacrificing accuracy.
Abstract:The diverse nature of dialects presents challenges for models trained on specific linguistic patterns, rendering them susceptible to errors when confronted with unseen or out-of-distribution (OOD) data. This study introduces a novel margin-enhanced joint energy model (MEJEM) tailored specifically for OOD detection in dialects. By integrating a generative model and the energy margin loss, our approach aims to enhance the robustness of dialect identification systems. Furthermore, we explore two OOD scores for OOD dialect detection, and our findings conclusively demonstrate that the energy score outperforms the softmax score. Leveraging Sharpness-Aware Minimization to optimize the training process of the joint model, we enhance model generalization by minimizing both loss and sharpness. Experiments conducted on dialect identification tasks validate the efficacy of Energy-Based Models and provide valuable insights into their performance.
Abstract:Noisy labels are inevitable, even in well-annotated datasets. The detection of noisy labels is of significant importance to enhance the robustness of speaker recognition models. In this paper, we propose a novel noisy label detection approach based on two new statistical metrics: Continuous Inconsistent Counting (CIC) and Total Inconsistent Counting (TIC). These metrics are calculated through Cross-Epoch Counting (CEC) and correspond to the early and late stages of training, respectively. Additionally, we categorize samples based on their prediction results into three categories: inconsistent samples, hard samples, and easy samples. During training, we gradually increase the difficulty of hard samples to update model parameters, preventing noisy labels from being overfitted. Compared to contrastive schemes, our approach not only achieves the best performance in speaker verification but also excels in noisy label detection.