Abstract:Meta-learning has gained wide popularity as a training framework that is more data-efficient than traditional machine learning methods. However, its generalization ability in complex task distributions, such as multimodal tasks, has not been thoroughly studied. Recently, some studies on multimodality-based meta-learning have emerged. This survey provides a comprehensive overview of the multimodality-based meta-learning landscape in terms of the methodologies and applications. We first formalize the definition of meta-learning and multimodality, along with the research challenges in this growing field, such as how to enrich the input in few-shot or zero-shot scenarios and how to generalize the models to new tasks. We then propose a new taxonomy to systematically discuss typical meta-learning algorithms combined with multimodal tasks. We investigate the contributions of related papers and summarize them by our taxonomy. Finally, we propose potential research directions for this promising field.
Abstract:Graphs play an important role in many applications. Recently, Graph Neural Networks (GNNs) have achieved promising results in graph analysis tasks. Some state-of-the-art GNN models have been proposed, e.g., Graph Convolutional Networks (GCNs), Graph Attention Networks (GATs), etc. Despite these successes, most of the GNNs only have shallow structure. This causes the low expressive power of the GNNs. To fully utilize the power of the deep neural network, some deep GNNs have been proposed recently. However, the design of deep GNNs requires significant architecture engineering. In this work, we propose a method to automate the deep GNNs design. In our proposed method, we add a new type of skip connection to the GNNs search space to encourage feature reuse and alleviate the vanishing gradient problem. We also allow our evolutionary algorithm to increase the layers of GNNs during the evolution to generate deeper networks. We evaluate our method in the graph node classification task. The experiments show that the GNNs generated by our method can obtain state-of-the-art results in Cora, Citeseer, Pubmed and PPI datasets.