Abstract:In this paper, we introduce two local graph features for missing link prediction tasks on ogbl-citation2. We define the features as Circle Features, which are borrowed from the concept of circle of friends. We propose the detailed computing formulas for the above features. Firstly, we define the first circle feature as modified swing for common graph, which comes from bipartite graph. Secondly, we define the second circle feature as bridge, which indicates the importance of two nodes for different circle of friends. In addition, we firstly propose the above features as bias to enhance graph transformer neural network, such that graph self-attention mechanism can be improved. We implement a Circled Feature aware Graph transformer (CFG) model based on SIEG network, which utilizes a double tower structure to capture both global and local structure features. Experimental results show that CFG achieves the state-of-the-art performance on dataset ogbl-citation2.
Abstract:In this paper, we propose an algorithm of Path-aware Siamese Graph neural network(PSG) for link prediction tasks. Firstly, PSG can capture both nodes and edge features for given two nodes, namely the structure information of k-neighborhoods and relay paths information of the nodes. Furthermore, siamese graph neural network is utilized by PSG for representation learning of two contrastive links, which are a positive link and a negative link. We evaluate the proposed algorithm PSG on a link property prediction dataset of Open Graph Benchmark (OGB), ogbl-ddi. PSG achieves top 1 performance on ogbl-ddi. The experimental results verify the superiority of PSG.