Abstract:A multiagent sequential decision problem has been seen in many critical applications including urban transportation, autonomous driving cars, military operations, etc. Its widely known solution, namely multiagent reinforcement learning, has evolved tremendously in recent years. Among them, the solution paradigm of modeling other agents attracts our interest, which is different from traditional value decomposition or communication mechanisms. It enables agents to understand and anticipate others' behaviors and facilitates their collaboration. Inspired by recent research on the legibility that allows agents to reveal their intentions through their behavior, we propose a multiagent active legibility framework to improve their performance. The legibility-oriented framework allows agents to conduct legible actions so as to help others optimise their behaviors. In addition, we design a series of problem domains that emulate a common scenario and best characterize the legibility in multiagent reinforcement learning. The experimental results demonstrate that the new framework is more efficient and costs less training time compared to several multiagent reinforcement learning algorithms.
Abstract:Learning robust multi-modal feature representations is critical for boosting tracking performance. To this end, we propose a novel X Modality Assisting Network (X-Net) to shed light on the impact of the fusion paradigm by decoupling the visual object tracking into three distinct levels, facilitating subsequent processing. Firstly, to tackle the feature learning hurdles stemming from significant differences between RGB and thermal modalities, a plug-and-play pixel-level generation module (PGM) is proposed based on self-knowledge distillation learning, which effectively generates X modality to bridge the gap between the dual patterns while reducing noise interference. Subsequently, to further achieve the optimal sample feature representation and facilitate cross-modal interactions, we propose a feature-level interaction module (FIM) that incorporates a mixed feature interaction transformer and a spatial-dimensional feature translation strategy. Ultimately, aiming at random drifting due to missing instance features, we propose a flexible online optimized strategy called the decision-level refinement module (DRM), which contains optical flow and refinement mechanisms. Experiments are conducted on three benchmarks to verify that the proposed X-Net outperforms state-of-the-art trackers.