Abstract:Hyperspectral image (HSI) contains both spatial pattern and spectral information which has been widely used in food safety, remote sensing, and medical detection. However, the acquisition of hyperspectral images is usually costly due to the complicated apparatus for the acquisition of optical spectrum. Recently, it has been reported that HSI can be reconstructed from single RGB image using convolution neural network (CNN) algorithms. Compared with the traditional hyperspectral cameras, the method based on CNN algorithms is simple, portable and low cost. In this study, we focused on the influence of the RGB camera spectral sensitivity (CSS) on the HSI. A Xenon lamp incorporated with a monochromator were used as the standard light source to calibrate the CSS. And the experimental results show that the CSS plays a significant role in the reconstruction accuracy of an HSI. In addition, we proposed a new HSI reconstruction network where the dimensional structure of the original hyperspectral datacube was modified by 3D matrix transpose to improve the reconstruction accuracy.
Abstract:Multiple optical scattering occurs when light propagates in a non-uniform medium. During the multiple scattering, images were distorted and the spatial information they carried became scrambled. However, the image information is not lost but presents in the form of speckle patterns (SPs). In this study, we built up an optical random scattering system based on an LCD and an RGB laser source. We found that the image classification can be improved by the help of random scattering which is considered as a feedforward neural network to extracts features from image. Along with the ridge classification deployed on computer, we achieved excellent classification accuracy higher than 94%, for a variety of data sets covering medical, agricultural, environmental protection and other fields. In addition, the proposed optical scattering system has the advantages of high speed, low power consumption, and miniaturization, which is suitable for deploying in edge computing applications.