Abstract:This paper focuses on a highly practical scenario: how to continue benefiting from the advantages of multi-modal image fusion under harsh conditions when only visible imaging sensors are available. To achieve this goal, we propose a novel concept of single-image fusion, which extends conventional data-level fusion to the knowledge level. Specifically, we develop MagicFuse, a novel single image fusion framework capable of deriving a comprehensive cross-spectral scene representation from a single low-quality visible image. MagicFuse first introduces an intra-spectral knowledge reinforcement branch and a cross-spectral knowledge generation branch based on the diffusion models. They mine scene information obscured in the visible spectrum and learn thermal radiation distribution patterns transferred to the infrared spectrum, respectively. Building on them, we design a multi-domain knowledge fusion branch that integrates the probabilistic noise from the diffusion streams of these two branches, from which a cross-spectral scene representation can be obtained through successive sampling. Then, we impose both visual and semantic constraints to ensure that this scene representation can satisfy human observation while supporting downstream semantic decision-making. Extensive experiments show that our MagicFuse achieves visual and semantic representation performance comparable to or even better than state-of-the-art fusion methods with multi-modal inputs, despite relying solely on a single degraded visible image.
Abstract:Current image fusion methods struggle to adapt to real-world environments encompassing diverse degradations with spatially varying characteristics. To address this challenge, we propose a robust fusion controller (RFC) capable of achieving degradation-aware image fusion through fine-grained language instructions, ensuring its reliable application in adverse environments. Specifically, RFC first parses language instructions to innovatively derive the functional condition and the spatial condition, where the former specifies the degradation type to remove, while the latter defines its spatial coverage. Then, a composite control priori is generated through a multi-condition coupling network, achieving a seamless transition from abstract language instructions to latent control variables. Subsequently, we design a hybrid attention-based fusion network to aggregate multi-modal information, in which the obtained composite control priori is deeply embedded to linearly modulate the intermediate fused features. To ensure the alignment between language instructions and control outcomes, we introduce a novel language-feature alignment loss, which constrains the consistency between feature-level gains and the composite control priori. Extensive experiments on publicly available datasets demonstrate that our RFC is robust against various composite degradations, particularly in highly challenging flare scenarios.