Abstract:A critical challenge to image-text retrieval is how to learn accurate correspondences between images and texts. Most existing methods mainly focus on coarse-grained correspondences based on co-occurrences of semantic objects, while failing to distinguish the fine-grained local correspondences. In this paper, we propose a novel Scene Graph based Fusion Network (dubbed SGFN), which enhances the images'/texts' features through intra- and cross-modal fusion for image-text retrieval. To be specific, we design an intra-modal hierarchical attention fusion to incorporate semantic contexts, such as objects, attributes, and relationships, into images'/texts' feature vectors via scene graphs, and a cross-modal attention fusion to combine the contextual semantics and local fusion via contextual vectors. Extensive experiments on public datasets Flickr30K and MSCOCO show that our SGFN performs better than quite a few SOTA image-text retrieval methods.
Abstract:Natural Language Processing (NLP) has been revolutionized by the use of Pre-trained Language Models (PLMs) such as BERT. Despite setting new records in nearly every NLP task, PLMs still face a number of challenges including poor interpretability, weak reasoning capability, and the need for a lot of expensive annotated data when applied to downstream tasks. By integrating external knowledge into PLMs, \textit{\underline{K}nowledge-\underline{E}nhanced \underline{P}re-trained \underline{L}anguage \underline{M}odels} (KEPLMs) have the potential to overcome the above-mentioned limitations. In this paper, we examine KEPLMs systematically through a series of studies. Specifically, we outline the common types and different formats of knowledge to be integrated into KEPLMs, detail the existing methods for building and evaluating KEPLMS, present the applications of KEPLMs in downstream tasks, and discuss the future research directions. Researchers will benefit from this survey by gaining a quick and comprehensive overview of the latest developments in this field.