Abstract:This paper describes a Two-step Band-split Neural Network (TBNN) approach for full-band acoustic echo cancellation. Specifically, after linear filtering, we split the full-band signal into wide-band (16KHz) and high-band (16-48KHz) for residual echo removal with lower modeling difficulty. The wide-band signal is processed by an updated gated convolutional recurrent network (GCRN) with U$^2$ encoder while the high-band signal is processed by a high-band post-filter net with lower complexity. Our approach submitted to ICASSP 2023 AEC Challenge has achieved an overall mean opinion score (MOS) of 4.344 and a word accuracy (WAcc) ratio of 0.795, leading to the 2$^{nd}$ (tied) in the ranking of the non-personalized track.
Abstract:Acoustic echo degrades the user experience in voice communication systems thus needs to be suppressed completely. We propose a real-time residual acoustic echo suppression (RAES) method using an efficient convolutional neural network. The double talk detector is used as an auxiliary task to improve the performance of RAES in the context of multi-task learning. The training criterion is based on a novel loss function, which we call as the suppression loss, to balance the suppression of residual echo and the distortion of near-end signals. The experimental results show that the proposed method can efficiently suppress the residual echo under different circumstances.