Abstract:This paper proposes techniques to enhance the performance of non-causal models for causal inference using data from randomized experiments. In domains like advertising, customer retention, and precision medicine, non-causal models that predict outcomes under no intervention are often used to score individuals and rank them according to the expected effectiveness of an intervention (e.g, an ad, a retention incentive, a nudge). However, these scores may not perfectly correspond to intervention effects due to the inherent non-causal nature of the models. To address this limitation, we propose causal fine-tuning and effect calibration, two techniques that leverage experimental data to refine the output of non-causal models for different causal tasks, including effect estimation, effect ordering, and effect classification. They are underpinned by two key advantages. First, they can effectively integrate the predictive capabilities of general non-causal models with the requirements of a causal task in a specific context, allowing decision makers to support diverse causal applications with a "foundational" scoring model. Second, through simulations and an empirical example, we demonstrate that they can outperform the alternative of building a causal-effect model from scratch, particularly when the available experimental data is limited and the non-causal scores already capture substantial information about the relative sizes of causal effects. Overall, this research underscores the practical advantages of combining experimental data with non-causal models to support causal applications.
Abstract:During the COVID-19 pandemic, large amounts of COVID-19 misinformation are spreading on social media. We are interested in the stance of Twitter users towards COVID-19 misinformation. However, due to the relative recent nature of the pandemic, only a few stance detection datasets fit our task. We have constructed a new stance dataset consisting of 2631 tweets annotated with the stance towards COVID-19 misinformation. In contexts with limited labeled data, we fine-tune our models by leveraging the MNLI dataset and two existing stance detection datasets (RumourEval and COVIDLies), and evaluate the model performance on our dataset. Our experimental results show that the model performs the best when fine-tuned sequentially on the MNLI dataset and the combination of the undersampled RumourEval and COVIDLies datasets. Our code and dataset are publicly available at https://github.com/yanfangh/covid-rumor-stance