Abstract:In this paper, we investigate the design of energy-efficient beamforming for an ISAC system, where the transmitted waveform is optimized for joint multi-user communication and target estimation simultaneously. We aim to maximize the system energy efficiency (EE), taking into account the constraints of a maximum transmit power budget, a minimum required signal-to-interference-plus-noise ratio (SINR) for communication, and a maximum tolerable Cramer-Rao bound (CRB) for target estimation. We first consider communication-centric EE maximization. To handle the non-convex fractional objective function, we propose an iterative quadratic-transform-Dinkelbach method, where Schur complement and semi-definite relaxation (SDR) techniques are leveraged to solve the subproblem in each iteration. For the scenarios where sensing is critical, we propose a novel performance metric for characterizing the sensing-centric EE and optimize the metric adopted in the scenario of sensing a point-like target and an extended target. To handle the nonconvexity, we employ the successive convex approximation (SCA) technique to develop an efficient algorithm for approximating the nonconvex problem as a sequence of convex ones. Furthermore, we adopt a Pareto optimization mechanism to articulate the tradeoff between the communication-centric EE and sensing-centric EE. We formulate the search of the Pareto boundary as a constrained optimization problem and propose a computationally efficient algorithm to handle it. Numerical results validate the effectiveness of our proposed algorithms compared with the baseline schemes and the obtained approximate Pareto boundary shows that there is a non-trivial tradeoff between communication-centric EE and sensing-centric EE, where the number of communication users and EE requirements have serious effects on the achievable tradeoff.
Abstract:In this paper we propose the use of quantum genetic algorithm to optimize the support vector machine (SVM) for human action recognition. The Microsoft Kinect sensor can be used for skeleton tracking, which provides the joints' position data. However, how to extract the motion features for representing the dynamics of a human skeleton is still a challenge due to the complexity of human motion. We present a highly efficient features extraction method for action classification, that is, using the joint angles to represent a human skeleton and calculating the variance of each angle during an action time window. Using the proposed representation, we compared the human action classification accuracy of two approaches, including the optimized SVM based on quantum genetic algorithm and the conventional SVM with grid search. Experimental results on the MSR-12 dataset show that the conventional SVM achieved an accuracy of $ 93.85\% $. The proposed approach outperforms the conventional method with an accuracy of $ 96.15\% $.