Abstract:The scarcity of high-quality large-scale labeled datasets poses a huge challenge for employing deep learning models in video deception detection. To address this issue, inspired by the psychological theory on the relation between deception and expressions, we propose a novel method called AFFAKT in this paper, which enhances the classification performance by transferring useful and correlated knowledge from a large facial expression dataset. Two key challenges in knowledge transfer arise: 1) \textit{how much} knowledge of facial expression data should be transferred and 2) \textit{how to} effectively leverage transferred knowledge for the deception classification model during inference. Specifically, the optimal relation mapping between facial expression classes and deception samples is firstly quantified using proposed H-OTKT module and then transfers knowledge from the facial expression dataset to deception samples. Moreover, a correlation prototype within another proposed module SRKB is well designed to retain the invariant correlations between facial expression classes and deception classes through momentum updating. During inference, the transferred knowledge is fine-tuned with the correlation prototype using a sample-specific re-weighting strategy. Experimental results on two deception detection datasets demonstrate the superior performance of our proposed method. The interpretability study reveals high associations between deception and negative affections, which coincides with the theory in psychology.
Abstract:Multispectral object detection, utilizing both visible (RGB) and thermal infrared (T) modals, has garnered significant attention for its robust performance across diverse weather and lighting conditions. However, effectively exploiting the complementarity between RGB-T modals while maintaining efficiency remains a critical challenge. In this paper, a very simple Group Shuffled Multi-receptive Attention (GSMA) module is proposed to extract and combine multi-scale RGB and thermal features. Then, the extracted multi-modal features are directly integrated with a multi-level path aggregation neck, which significantly improves the fusion effect and efficiency. Meanwhile, multi-modal object detection often adopts union annotations for both modals. This kind of supervision is not sufficient and unfair, since objects observed in one modal may not be seen in the other modal. To solve this issue, Multi-modal Supervision (MS) is proposed to sufficiently supervise RGB-T object detection. Comprehensive experiments on two challenging benchmarks, KAIST and DroneVehicle, demonstrate the proposed model achieves the state-of-the-art accuracy while maintaining competitive efficiency.