Abstract:The scarcity of high-quality large-scale labeled datasets poses a huge challenge for employing deep learning models in video deception detection. To address this issue, inspired by the psychological theory on the relation between deception and expressions, we propose a novel method called AFFAKT in this paper, which enhances the classification performance by transferring useful and correlated knowledge from a large facial expression dataset. Two key challenges in knowledge transfer arise: 1) \textit{how much} knowledge of facial expression data should be transferred and 2) \textit{how to} effectively leverage transferred knowledge for the deception classification model during inference. Specifically, the optimal relation mapping between facial expression classes and deception samples is firstly quantified using proposed H-OTKT module and then transfers knowledge from the facial expression dataset to deception samples. Moreover, a correlation prototype within another proposed module SRKB is well designed to retain the invariant correlations between facial expression classes and deception classes through momentum updating. During inference, the transferred knowledge is fine-tuned with the correlation prototype using a sample-specific re-weighting strategy. Experimental results on two deception detection datasets demonstrate the superior performance of our proposed method. The interpretability study reveals high associations between deception and negative affections, which coincides with the theory in psychology.
Abstract:Scene graph generation (SGG) aims to automatically map an image into a semantic structural graph for better scene understanding. It has attracted significant attention for its ability to provide object and relation information, enabling graph reasoning for downstream tasks. However, it faces severe limitations in practice due to the biased data and training method. In this paper, we present a more rational and effective strategy based on causal inference for object relation prediction. To further evaluate the superiority of our strategy, we propose an object enhancement module to conduct ablation studies. Experimental results on the Visual Gnome 150 (VG-150) dataset demonstrate the effectiveness of our proposed method. These contributions can provide great potential for foundation models for decision-making.