Abstract:Criminals are using every means available to launder the profits from their illegal activities into ostensibly legitimate assets. Meanwhile, most commercial anti-money laundering systems are still rule-based, which cannot adapt to the ever-changing tricks. Although some machine learning methods have been proposed, they are mainly focused on the perspective of abnormal behavior for single accounts. Considering money laundering activities are often involved in gang criminals, these methods are still not intelligent enough to crack down on criminal gangs all-sidedly. In this paper, a systematic solution is presented to find suspicious money laundering gangs. A temporal-directed Louvain algorithm has been proposed to detect communities according to relevant anti-money laundering patterns. All processes are implemented and optimized on Spark platform. This solution can greatly improve the efficiency of anti-money laundering work for financial regulation agencies.
Abstract:Rapid growth of modern technologies such as internet and mobile computing are bringing dramatically increased e-commerce payments, as well as the explosion in transaction fraud. Meanwhile, fraudsters are continually refining their tricks, making rule-based fraud detection systems difficult to handle the ever-changing fraud patterns. Many data mining and artificial intelligence methods have been proposed for identifying small anomalies in large transaction data sets, increasing detecting efficiency to some extent. Nevertheless, there is always a contradiction that most methods are irrelevant to transaction sequence, yet sequence-related methods usually cannot learn information at single-transaction level well. In this paper, a new "within->between->within" sandwich-structured sequence learning architecture has been proposed by stacking an ensemble method, a deep sequential learning method and another top-layer ensemble classifier in proper order. Moreover, attention mechanism has also been introduced in to further improve performance. Models in this structure have been manifested to be very efficient in scenarios like fraud detection, where the information sequence is made up of vectors with complex interconnected features.