Abstract:To guarantee excellent reliability performance in ultra-reliable low-latency communications (URLLC), pragmatic precoder design is an effective approach. However, an efficient precoder design highly depends on the accurate instantaneous channel state information at the transmitter (ICSIT), which however, is not always available in practice. To overcome this problem, in this paper, we focus on the orthogonal time frequency space (OTFS)-based URLLC system and adopt a deep learning (DL) approach to directly predict the precoder for the next time frame to minimize the frame error rate (FER) via implicitly exploiting the features from estimated historical channels in the delay-Doppler domain. By doing this, we can guarantee the system reliability even without the knowledge of ICSIT. To this end, a general precoder design problem is formulated where a closed-form theoretical FER expression is specifically derived to characterize the system reliability. Then, a delay-Doppler domain channels-aware convolutional long short-term memory (CLSTM) network (DDCL-Net) is proposed for predictive precoder design. In particular, both the convolutional neural network and LSTM modules are adopted in the proposed neural network to exploit the spatial-temporal features of wireless channels for improving the learning performance. Finally, simulation results demonstrated that the FER performance of the proposed method approaches that of the perfect ICSI-aided scheme.
Abstract:This paper investigates the orthogonal time frequency space (OTFS) transmission for enabling ultra-reliable low-latency communications (URLLC). To guarantee excellent reliability performance, pragmatic precoder design is an effective and indispensable solution. However, the design requires accurate instantaneous channel state information at the transmitter (ICSIT) which is not always available in practice. Motivated by this, we adopt a deep learning (DL) approach to exploit implicit features from estimated historical delay-Doppler domain channels (DDCs) to directly predict the precoder to be adopted in the next time frame for minimizing the frame error rate (FER), that can further improve the system reliability without the acquisition of ICSIT. To this end, we first establish a predictive transmission protocol and formulate a general problem for the precoder design where a closed-form theoretical FER expression is derived serving as the objective function to characterize the system reliability. Then, we propose a DL-based predictive precoder design framework which exploits an unsupervised learning mechanism to improve the practicability of the proposed scheme. As a realization of the proposed framework, we design a DDCs-aware convolutional long short-term memory (CLSTM) network for the precoder design, where both the convolutional neural network and LSTM modules are adopted to facilitate the spatial-temporal feature extraction from the estimated historical DDCs to further enhance the precoder performance. Simulation results demonstrate that the proposed scheme facilitates a flexible reliability-latency tradeoff and achieves an excellent FER performance that approaches the lower bound obtained by a genie-aided benchmark requiring perfect ICSI at both the transmitter and receiver.
Abstract:Beamforming design for intelligent reflecting surface (IRS)-assisted multi-user communication (IRS-MUC) systems critically depends on the acquisition of accurate channel state information (CSI). However, channel estimation (CE) in IRS-MUC systems causes a large signaling overhead for training due to the large number of IRS elements. In this paper, taking into account user mobility, we adopt a deep learning (DL) approach to implicitly learn the historical line-of-sight (LoS) channel features and predict the IRS phase shifts to be adopted for the next time slot for maximization of the weighted sum-rate (WSR) of the IRS-MUC system. With the proposed predictive approach, we can avoid full-scale CSI estimation and facilitate low-dimensional CE for transmit beamforming design such that the signaling overhead is reduced by a scale of $\frac{1}{N}$, where $N$ is the number of IRS elements. To this end, we first develop a universal DL-based predictive beamforming (DLPB) framework featuring a two-stage predictive-instantaneous beamforming mechanism. As a realization of the developed framework, a location-aware convolutional long short-term memory (CLSTM) graph neural network (GNN) is developed to facilitate effective predictive beamforming at the IRS, where a CLSTM module is first adopted to exploit the spatial and temporal features of the considered channels and a GNN is then applied to empower the designed neural network with high scalability and generalizability. Furthermore, in the second stage, based on the predicted IRS phase shifts, an instantaneous CSI-aware fully-connected neural network is designed to optimize the transmit beamforming at the access point. Simulation results demonstrate that the proposed framework not only achieves a better WSR performance and requires a lower CE overhead compared with state-of-the-art benchmarks, but also is highly scalable in the numbers of users.
Abstract:Predictive beamforming design is an essential task in realizing high-mobility integrated sensing and communication (ISAC), which highly depends on the accuracy of the channel prediction (CP), i.e., predicting the angular parameters of users. However, the performance of CP highly depends on the estimated historical channel stated information (CSI) with estimation errors, resulting in the performance degradation for most traditional CP methods. To further improve the prediction accuracy, in this paper, we focus on the ISAC in vehicle networks and propose a convolutional long-short term (CLSTM) recurrent neural network (CLRNet) to predict the angle of vehicles for the design of predictive beamforming. In the developed CLRNet, both the convolutional neural network (CNN) module and the LSTM module are adopted to exploit the spatial features and the temporal dependency from the estimated historical angles of vehicles to facilitate the angle prediction. Finally, numerical results demonstrate that the developed CLRNet-based method is robust to the estimation error and can significantly outperform the state-of-the-art benchmarks, achieving an excellent sum-rate performance for ISAC systems.
Abstract:The implementation of integrated sensing and communication (ISAC) highly depends on the effective beamforming design exploiting accurate instantaneous channel state information (ICSI). However, channel tracking in ISAC requires large amount of training overhead and prohibitively large computational complexity. To address this problem, in this paper, we focus on ISAC-assisted vehicular networks and exploit a deep learning approach to implicitly learn the features of historical channels and directly predict the beamforming matrix for the next time slot to maximize the average achievable sum-rate of system, thus bypassing the need of explicit channel tracking for reducing the system signaling overhead. To this end, a general sum-rate maximization problem with Cramer-Rao lower bounds-based sensing constraints is first formulated for the considered ISAC system. Then, a historical channels-based convolutional long short-term memory network is designed for predictive beamforming that can exploit the spatial and temporal dependencies of communication channels to further improve the learning performance. Finally, simulation results show that the proposed method can satisfy the requirement of sensing performance, while its achievable sum-rate can approach the upper bound obtained by a genie-aided scheme with perfect ICSI available.
Abstract:This paper investigates the integrated sensing and communication (ISAC) in vehicle-to-infrastructure (V2I) networks. To realize ISAC, an effective beamforming design is essential which however, highly depends on the availability of accurate channel tracking requiring large training overhead and computational complexity. Motivated by this, we adopt a deep learning (DL) approach to implicitly learn the features of historical channels and directly predict the beamforming matrix to be adopted for the next time slot to maximize the average achievable sum-rate of an ISAC system. The proposed method can bypass the need of explicit channel tracking process and reduce the signaling overhead significantly. To this end, a general sum-rate maximization problem with Cramer-Rao lower bounds (CRLBs)-based sensing constraints is first formulated for the considered ISAC system. Then, by exploiting the penalty method, a versatile unsupervised DL-based predictive beamforming design framework is developed to address the formulated design problem. As a realization of the developed framework, a historical channels-based convolutional long short-term memory (LSTM) network (HCL-Net) is devised for predictive beamforming in the ISAC-based V2I network. Specifically, the convolution and LSTM modules are successively adopted in the proposed HCL-Net to exploit the spatial and temporal dependencies of communication channels to further improve the learning performance. Finally, simulation results show that the proposed predictive method not only guarantees the required sensing performance, but also achieves a satisfactory sum-rate that can approach the upper bound obtained by the genie-aided scheme with the perfect instantaneous channel state information.
Abstract:The realization of practical intelligent reflecting surface (IRS)-assisted multi-user communication (IRS-MUC) systems critically depends on the proper beamforming design exploiting accurate channel state information (CSI). However, channel estimation (CE) in IRS-MUC systems requires a significantly large training overhead due to the numerous reflection elements involved in IRS. In this paper, we adopt a deep learning approach to implicitly learn the historical channel features and directly predict the IRS phase shifts for the next time slot to maximize the average achievable sum-rate of an IRS-MUC system taking into account the user mobility. By doing this, only a low-dimension multiple-input single-output (MISO) CE is needed for transmit beamforming design, thus significantly reducing the CE overhead. To this end, a location-aware convolutional long short-term memory network (LA-CLNet) is first developed to facilitate predictive beamforming at IRS, where the convolutional and recurrent units are jointly adopted to exploit both the spatial and temporal features of channels simultaneously. Given the predictive IRS phase shift beamforming, an instantaneous CSI (ICSI)-aware fully-connected neural network (IA-FNN) is then proposed to optimize the transmit beamforming matrix at the access point. Simulation results demonstrate that the sum-rate performance achieved by the proposed method approaches that of the genie-aided scheme with the full perfect ICSI.