Abstract:Recent advancements in feature representation and dimension reduction have highlighted their crucial role in enhancing the efficacy of predictive modeling. This work introduces TemporalPaD, a novel end-to-end deep learning framework designed for temporal pattern datasets. TemporalPaD integrates reinforcement learning (RL) with neural networks to achieve concurrent feature representation and feature reduction. The framework consists of three cooperative modules: a Policy Module, a Representation Module, and a Classification Module, structured based on the Actor-Critic (AC) framework. The Policy Module, responsible for dimensionality reduction through RL, functions as the actor, while the Representation Module for feature extraction and the Classification Module collectively serve as the critic. We comprehensively evaluate TemporalPaD using 29 UCI datasets, a well-known benchmark for validating feature reduction algorithms, through 10 independent tests and 10-fold cross-validation. Additionally, given that TemporalPaD is specifically designed for time series data, we apply it to a real-world DNA classification problem involving enhancer category and enhancer strength. The results demonstrate that TemporalPaD is an efficient and effective framework for achieving feature reduction, applicable to both structured data and sequence datasets. The source code of the proposed TemporalPaD is freely available as supplementary material to this article and at http://www.healthinformaticslab.org/supp/.
Abstract:Exploring sparse reward multi-agent reinforcement learning (MARL) environments with traps in a collaborative manner is a complex task. Agents typically fail to reach the goal state and fall into traps, which affects the overall performance of the system. To overcome this issue, we present SOMARL, a framework that uses prior knowledge to reduce the exploration space and assist learning. In SOMARL, agents are treated as part of the MARL environment, and symbolic knowledge is embedded using a tree structure to build a knowledge hierarchy. The framework has a two-layer hierarchical structure, comprising a hybrid module with a Hierarchical Task Network (HTN) planning and meta-controller at the higher level, and a MARL-based interactive module at the lower level. The HTN module and meta-controller use Hierarchical Domain Definition Language (HDDL) and the option framework to formalize symbolic knowledge and obtain domain knowledge and a symbolic option set, respectively. Moreover, the HTN module leverages domain knowledge to guide low-level agent exploration by assisting the meta-controller in selecting symbolic options. The meta-controller further computes intrinsic rewards of symbolic options to limit exploration behavior and adjust HTN planning solutions as needed. We evaluate SOMARL on two benchmarks, FindTreasure and MoveBox, and report superior performance over state-of-the-art MARL and subgoal-based baselines for MARL environments significantly.