Abstract:Auditory attention decoding from electroencephalogram (EEG) could infer to which source the user is attending in noisy environments. Decoding algorithms and experimental paradigm designs are crucial for the development of technology in practical applications. To simulate real-world scenarios, this study proposed a cue-masked auditory attention paradigm to avoid information leakage before the experiment. To obtain high decoding accuracy with low latency, an end-to-end deep learning model, AADNet, was proposed to exploit the spatiotemporal information from the short time window of EEG signals. The results showed that with a 0.5-second EEG window, AADNet achieved an average accuracy of 93.46% and 91.09% in decoding auditory orientation attention (OA) and timbre attention (TA), respectively. It significantly outperformed five previous methods and did not need the knowledge of the original audio source. This work demonstrated that it was possible to detect the orientation and timbre of auditory attention from EEG signals fast and accurately. The results are promising for the real-time multi-property auditory attention decoding, facilitating the application of the neuro-steered hearing aids and other assistive listening devices.
Abstract:Recently, self-training and active learning have been proposed to alleviate this problem. Self-training can improve model accuracy with massive unlabeled data, but some pseudo labels containing noise would be generated with limited or imbalanced training data. And there will be suboptimal models if human guidance is absent. Active learning can select more effective data to intervene, while the model accuracy can not be improved because the massive unlabeled data are not used. And the probability of querying sub-optimal samples will increase when the domain difference is too large, increasing annotation cost. This paper proposes an iterative loop learning method combining Self-Training and Active Learning (STAL) for domain adaptive semantic segmentation. The method first uses self-training to learn massive unlabeled data to improve model accuracy and provide more accurate selection models for active learning. Secondly, combined with the sample selection strategy of active learning, manual intervention is used to correct the self-training learning. Iterative loop to achieve the best performance with minimal label cost. Extensive experiments show that our method establishes state-of-the-art performance on tasks of GTAV to Cityscapes, SYNTHIA to Cityscapes, improving by 4.9% mIoU and 5.2% mIoU, compared to the previous best method, respectively. The code is available at https://github.com/licongguan/STAL.