Abstract:The integration of large language models (LLMs) into the planning module of Embodied Artificial Intelligence (Embodied AI) systems has greatly enhanced their ability to translate complex user instructions into executable policies. In this paper, we demystified how traditional LLM jailbreak attacks behave in the Embodied AI context. We conducted a comprehensive safety analysis of the LLM-based planning module of embodied AI systems against jailbreak attacks. Using the carefully crafted Harmful-RLbench, we accessed 20 open-source and proprietary LLMs under traditional jailbreak attacks, and highlighted two key challenges when adopting the prior jailbreak techniques to embodied AI contexts: (1) The harmful text output by LLMs does not necessarily induce harmful policies in Embodied AI context, and (2) even we can generate harmful policies, we have to guarantee they are executable in practice. To overcome those challenges, we propose Policy Executable (POEX) jailbreak attacks, where harmful instructions and optimized suffixes are injected into LLM-based planning modules, leading embodied AI to perform harmful actions in both simulated and physical environments. Our approach involves constraining adversarial suffixes to evade detection and fine-tuning a policy evaluater to improve the executability of harmful policies. We conducted extensive experiments on both a robotic arm embodied AI platform and simulators, to validate the attack and policy success rates on 136 harmful instructions from Harmful-RLbench. Our findings expose serious safety vulnerabilities in LLM-based planning modules, including the ability of POEX to be transferred across models. Finally, we propose mitigation strategies, such as safety-constrained prompts, pre- and post-planning checks, to address these vulnerabilities and ensure the safe deployment of embodied AI in real-world settings.
Abstract:LiDAR (Light Detection and Ranging) is a pivotal sensor for autonomous driving, offering precise 3D spatial information. Previous signal attacks against LiDAR systems mainly exploit laser signals. In this paper, we investigate the possibility of cross-modality signal injection attacks, i.e., injecting intentional electromagnetic interference (IEMI) to manipulate LiDAR output. Our insight is that the internal modules of a LiDAR, i.e., the laser receiving circuit, the monitoring sensors, and the beam-steering modules, even with strict electromagnetic compatibility (EMC) testing, can still couple with the IEMI attack signals and result in the malfunction of LiDAR systems. Based on the above attack surfaces, we propose the PhantomLiDAR attack, which manipulates LiDAR output in terms of Points Interference, Points Injection, Points Removal, and even LiDAR Power-Off. We evaluate and demonstrate the effectiveness of PhantomLiDAR with both simulated and real-world experiments on five COTS LiDAR systems. We also conduct feasibility experiments in real-world moving scenarios. We provide potential defense measures that can be implemented at both the sensor level and the vehicle system level to mitigate the risks associated with IEMI attacks. Video demonstrations can be viewed at https://sites.google.com/view/phantomlidar.
Abstract:Automatic speech recognition (ASR) systems have been shown to be vulnerable to adversarial examples (AEs). Recent success all assumes that users will not notice or disrupt the attack process despite the existence of music/noise-like sounds and spontaneous responses from voice assistants. Nonetheless, in practical user-present scenarios, user awareness may nullify existing attack attempts that launch unexpected sounds or ASR usage. In this paper, we seek to bridge the gap in existing research and extend the attack to user-present scenarios. We propose VRIFLE, an inaudible adversarial perturbation (IAP) attack via ultrasound delivery that can manipulate ASRs as a user speaks. The inherent differences between audible sounds and ultrasounds make IAP delivery face unprecedented challenges such as distortion, noise, and instability. In this regard, we design a novel ultrasonic transformation model to enhance the crafted perturbation to be physically effective and even survive long-distance delivery. We further enable VRIFLE's robustness by adopting a series of augmentation on user and real-world variations during the generation process. In this way, VRIFLE features an effective real-time manipulation of the ASR output from different distances and under any speech of users, with an alter-and-mute strategy that suppresses the impact of user disruption. Our extensive experiments in both digital and physical worlds verify VRIFLE's effectiveness under various configurations, robustness against six kinds of defenses, and universality in a targeted manner. We also show that VRIFLE can be delivered with a portable attack device and even everyday-life loudspeakers.