Abstract:Images captured under complicated rain conditions often suffer from noticeable degradation of visibility. The rain models generally introduce diversity visibility degradation, which includes rain streak, rain drop as well as rain mist. Numerous existing single image deraining methods focus on the only one type rain model, which does not have strong generalization ability. In this paper, we propose a novel end-to-end Neuron Attention Stage-by-Stage Net (NASNet), which can solve all types of rain model tasks efficiently. For one thing, we pay more attention on the Neuron relationship and propose a lightweight Neuron Attention (NA) architectural mechanism. It can adaptively recalibrate neuron-wise feature responses by modelling interdependencies and mutual influence between neurons. Our NA architecture consists of Depthwise Conv and Pointwise Conv, which has slight computation cost and higher performance than SE block by our contrasted experiments. For another, we propose a stage-by-stage unified pattern network architecture, the stage-by-stage strategy guides the later stage by incorporating the useful information in previous stage. We concatenate and fuse stage-level information dynamically by NA module. Extensive experiments demonstrate that our proposed NASNet significantly outperforms the state-of-theart methods by a large margin in terms of both quantitative and qualitative measures on all six public large-scale datasets for three rain model tasks.
Abstract:In this paper, we propose an end-to-end feature fusion at-tention network (FFA-Net) to directly restore the haze-free image. The FFA-Net architecture consists of three key components: 1) A novel Feature Attention (FA) module combines Channel Attention with Pixel Attention mechanism, considering that different channel-wise features contain totally different weighted information and haze distribution is uneven on the different image pixels. FA treats different features and pixels unequally, which provides additional flexibility in dealing with different types of information, expanding the representational ability of CNNs. 2) A basic block structure consists of Local Residual Learning and Feature Attention, Local Residual Learning allowing the less important information such as thin haze region or low-frequency to be bypassed through multiple local residual connections, let main network architecture focus on more effective information. 3) An Attention-based different levels Feature Fusion (FFA) structure, the feature weights are adaptively learned from the Feature Attention (FA) module, giving more weight to important features. This structure can also retain the information of shallow layers and pass it into deep layers. The experimental results demonstrate that our proposed FFA-Net surpasses previous state-of-the-art single image dehazing methods by a very large margin both quantitatively and qualitatively, boosting the best published PSNR metric from 30.23db to 36.39db on the SOTS indoor test dataset. Code has been made available at GitHub.