Abstract:Purpose: To develop a simultaneous multislice (SMS) first-pass perfusion technique that can achieve whole heart coverage with high multi-band factors, while avoiding the issue of slice leakage. Methods: The proposed Simultaneous Multislice Imaging via Linear phase modulated Extended field of view (SMILE) treats the SMS acquisition and reconstruction within an extended field of view framework, allowing arbitrarily under-sampling of phase encoding lines of the extended k-space matrix and enabling the direct application of 2D parallel imaging reconstruction techniques. We presented a theoretical framework that offers insights into the performance of SMILE. We performed retrospective comparison on 28 subjects and prospective perfusion experiments on 49 patients undergoing routine clinical CMR studies with SMILE at multiband (MB) factors of 3-5, with a total acceleration factor ($R$) of 8 and 10 respectively, and compared SMILE to conventional SMS techniques using standard FOV 2D CAIPI acquisition and standard 2D slice separation techniques including split-slice GRAPPA and ROCK-SPIRiT. Results: Retrospective studies demonstrated 5.2 to 8.0 dB improvement in signal to error ratio (SER) of SMILE over CAIPI perfusion. Prospective studies showed good image quality with grades of 4.5 $\pm$ 0.5 for MB=3, $R$=8 and 3.6 $\pm$ 0.8 for MB=5, $R$=10. (5-point Likert Scale) Conclusion: The theoretical derivation and experimental results validate the SMILE's improved performance at high acceleration and MB factors as compared to the existing 2D CAIPI SMS acquisition and reconstruction techniques for first-pass myocardial perfusion imaging.
Abstract:We propose an approach to generate realistic and high-fidelity stock market data based on generative adversarial networks (GANs). Our Stock-GAN model employs a conditional Wasserstein GAN to capture history dependence of orders. The generator design includes specially crafted aspects including components that approximate the market's auction mechanism, augmenting the order history with order-book constructions to improve the generation task. We perform an ablation study to verify the usefulness of aspects of our network structure. We provide a mathematical characterization of distribution learned by the generator. We also propose statistics to measure the quality of generated orders. We test our approach with synthetic and actual market data, compare to many baseline generative models, and find the generated data to be close to real data.