Abstract:Purpose: To develop a simultaneous multislice (SMS) first-pass perfusion technique that can achieve whole heart coverage with high multi-band factors, while avoiding the issue of slice leakage. Methods: The proposed Simultaneous Multislice Imaging via Linear phase modulated Extended field of view (SMILE) treats the SMS acquisition and reconstruction within an extended field of view framework, allowing arbitrarily under-sampling of phase encoding lines of the extended k-space matrix and enabling the direct application of 2D parallel imaging reconstruction techniques. We presented a theoretical framework that offers insights into the performance of SMILE. We performed retrospective comparison on 28 subjects and prospective perfusion experiments on 49 patients undergoing routine clinical CMR studies with SMILE at multiband (MB) factors of 3-5, with a total acceleration factor ($R$) of 8 and 10 respectively, and compared SMILE to conventional SMS techniques using standard FOV 2D CAIPI acquisition and standard 2D slice separation techniques including split-slice GRAPPA and ROCK-SPIRiT. Results: Retrospective studies demonstrated 5.2 to 8.0 dB improvement in signal to error ratio (SER) of SMILE over CAIPI perfusion. Prospective studies showed good image quality with grades of 4.5 $\pm$ 0.5 for MB=3, $R$=8 and 3.6 $\pm$ 0.8 for MB=5, $R$=10. (5-point Likert Scale) Conclusion: The theoretical derivation and experimental results validate the SMILE's improved performance at high acceleration and MB factors as compared to the existing 2D CAIPI SMS acquisition and reconstruction techniques for first-pass myocardial perfusion imaging.
Abstract:PURPOSE: To present and validate a self-supervised MRI reconstruction method that does not require fully sampled k-space data. METHODS: ReSiDe is inspired by plug-and-play (PnP) methods and employs a denoiser as a regularizer. In contrast to traditional PnP approaches that utilize generic denoisers or train deep learning-based denoisers using high-quality images or image patches, ReSiDe directly trains the denoiser on the image or images being reconstructed from the undersampled data. We introduce two variations of our method, ReSiDe-S and ReSiDe-M. ReSiDe-S is scan-specific and works with a single set of undersampled measurements, while ReSiDe-M operates on multiple sets of undersampled measurements. More importantly, the trained denoisers in ReSiDe-M are stored for PnP recovery without further training. To improve robustness, the denoising strength in ReSiDe-S and ReSiDe- M is auto-tuned using the discrepancy principle. RESULTS: Studies I, II, and III compare ReSiDe-S and ReSiDe-M against other self-supervised or unsupervised methods using data from T1- and T2-weighted brain MRI, MRXCAT digital perfusion phantom, and first-pass cardiac perfusion, respectively. ReSiDe-S and ReSiDe-M outperform other methods in terms of reconstruction signal-to-noise ratio and structural similarity index measure for Studies I and II and in terms of expert scoring for Study III. CONCLUSION: A self-supervised image reconstruction method is presented and validated in both static and dynamic MRI applications. These developments can benefit MRI applications where availability of fully sampled training data is limited.
Abstract:Plug-and-play (PnP) methods that employ application-specific denoisers have been proposed to solve inverse problems, including MRI reconstruction. However, training application-specific denoisers is not feasible for many applications due to the lack of training data. In this work, we propose a PnP-inspired recovery method that does not require data beyond the single, incomplete set of measurements. The proposed method, called recovery with a self-calibrated denoiser (ReSiDe), trains the denoiser from the patches of the image being recovered. The denoiser training and a call to the denoising subroutine are performed in each iteration of a PnP algorithm, leading to a progressive refinement of the reconstructed image. For validation, we compare ReSiDe with a compressed sensing-based method and a PnP method with BM3D denoising using single-coil MRI brain data.
Abstract:Cardiac magnetic resonance imaging (CMR) is a noninvasive imaging modality that provides a comprehensive evaluation of the cardiovascular system. The clinical utility of CMR is hampered by long acquisition times, however. In this work, we propose and validate a plug-and-play (PnP) method for CMR reconstruction from undersampled multi-coil data. To fully exploit the rich image structure inherent in CMR, we pair the PnP framework with a deep learning (DL)-based denoiser that is trained using spatiotemporal patches from high-quality, breath-held cardiac cine images. The resulting "PnP-DL" method iterates over data consistency and denoising subroutines. We compare the reconstruction performance of PnP-DL to that of compressed sensing (CS) using eight breath-held and ten real-time (RT) free-breathing cardiac cine datasets. We find that, for breath-held datasets, PnP-DL offers more than one dB advantage over commonly used CS methods. For RT free-breathing datasets, where ground truth is not available, PnP-DL receives higher scores in qualitative evaluation. The results highlight the potential of PnP-DL to accelerate RT CMR.