Abstract:As the most representative scenario of spatial-temporal forecasting tasks, the traffic forecasting task attracted numerous attention from machine learning community due to its intricate correlation both in space and time dimension. Existing methods often treat road networks over time as spatial-temporal graphs, addressing spatial and temporal representations independently. However, these approaches struggle to capture the dynamic topology of road networks, encounter issues with message passing mechanisms and over-smoothing, and face challenges in learning spatial and temporal relationships separately. To address these limitations, we propose treating nodes in road networks at different time steps as independent spatial-temporal tokens and feeding them into a vanilla Transformer to learn complex spatial-temporal patterns, design STformer achieving SOTA. Given its quadratic complexity, we introduce a variant NSTformer based on Nystr$\ddot{o}$m method to approximate self-attention with linear complexity but even slightly better than former in a few cases astonishingly. Extensive experimental results on traffic datasets demonstrate that the proposed method achieves state-of-the-art performance at an affordable computational cost. Our code will be made available.
Abstract:This work aims to tackle the labor-intensive and resource-consuming task of indoor positioning by proposing an efficient approach. The proposed approach involves the introduction of a semi-supervised learning (SSL) with a biased teacher (SSLB) algorithm, which effectively utilizes both labeled and unlabeled channel data. To reduce measurement expenses, unlabeled data is generated using an updated channel simulator (UCHS), and then weighted by adaptive confidence values to simplify the tuning of hyperparameters. Simulation results demonstrate that the proposed strategy achieves superior performance while minimizing measurement overhead and training expense compared to existing benchmarks, offering a valuable and practical solution for indoor positioning.
Abstract:The method of training language models based on domain datasets has obtained significant achievements in the task of generating scientific paper abstracts. However, such models face problems of generalization and expensive training costs. The use of large language models (LLMs) to solve the task of generating paper abstracts saves the cost of model training. However, due to the hallucination problem of LLM, it is often necessary to improve the reliability of the results through multi-round query prompt approach such as Graph of Thoughts (GoT), which also brings additional reasoning costs. In this paper, we propose a Dynamic Graph of Thought (DGoT). It not only inherits the advantages of the existing GoT prompt approach, but also dynamically adjust the graph structure according to data characteristics while reducing model reasoning cost. Experimental results show that our method's cost-effectiveness in abstract generation tasks is only 43.7% to 56.4% of other multi-round query prompt approaches. Our code is available at https://github.com/JayceNing/DGoT.