Abstract:Learning individual-level treatment effect is a fundamental problem in causal inference and has received increasing attention in many areas, especially in the user growth area which concerns many internet companies. Recently, disentangled representation learning methods that decompose covariates into three latent factors, including instrumental, confounding and adjustment factors, have witnessed great success in treatment effect estimation. However, it remains an open problem how to learn the underlying disentangled factors precisely. Specifically, previous methods fail to obtain independent disentangled factors, which is a necessary condition for identifying treatment effect. In this paper, we propose Disentangled Representations for Counterfactual Regression via Mutual Information Minimization (MIM-DRCFR), which uses a multi-task learning framework to share information when learning the latent factors and incorporates MI minimization learning criteria to ensure the independence of these factors. Extensive experiments including public benchmarks and real-world industrial user growth datasets demonstrate that our method performs much better than state-of-the-art methods.
Abstract:Advertisers play an essential role in many e-commerce platforms like Taobao and Amazon. Fulfilling their marketing needs and supporting their business growth is critical to the long-term prosperity of platform economies. However, compared with extensive studies on user modeling such as click-through rate predictions, much less attention has been drawn to advertisers, especially in terms of understanding their diverse demands and performance. Different from user modeling, advertiser modeling generally involves many kinds of tasks (e.g. predictions of advertisers' expenditure, active-rate, or total impressions of promoted products). In addition, major e-commerce platforms often provide multiple marketing scenarios (e.g. Sponsored Search, Display Ads, Live Streaming Ads) while advertisers' behavior tend to be dispersed among many of them. This raises the necessity of multi-task and multi-scenario consideration in comprehensive advertiser modeling, which faces the following challenges: First, one model per scenario or per task simply doesn't scale; Second, it is particularly hard to model new or minor scenarios with limited data samples; Third, inter-scenario correlations are complicated, and may vary given different tasks. To tackle these challenges, we propose a multi-scenario multi-task meta learning approach (M2M) which simultaneously predicts multiple tasks in multiple advertising scenarios.