Abstract:Firefly algorithm is a nature-inspired optimization algorithm and there have been significant developments since its appearance about ten years ago. This chapter summarizes the latest developments about the firefly algorithm and its variants as well as their diverse applications. Future research directions are also highlighted.
Abstract:Many optimization problems in science and engineering are challenging to solve, and the current trend is to use swarm intelligence (SI) and SI-based algorithms to tackle such challenging problems. Some significant developments have been made in recent years, though there are still many open problems in this area. This paper provides a short but timely analysis about SI-based algorithms and their links with self-organization. Different characteristics and properties are analyzed here from both mathematical and qualitative perspectives. Future research directions are outlined and open questions are also highlighted.
Abstract:Flower pollination algorithm is a recent metaheuristic algorithm for solving nonlinear global optimization problems. The algorithm has also been extended to solve multiobjective optimization with promising results. In this work, we analyze this algorithm mathematically and prove its convergence properties by using Markov chain theory. By constructing the appropriate transition probability for a population of flower pollen and using the homogeneity property, it can be shown that the constructed stochastic sequences can converge to the optimal set. Under the two proper conditions for convergence, it is proved that the simplified flower pollination algorithm can indeed satisfy these convergence conditions and thus the global convergence of this algorithm can be guaranteed. Numerical experiments are used to demonstrate that the flower pollination algorithm can converge quickly in practice and can thus achieve global optimality efficiently.
Abstract:Flower pollination algorithm is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, we extend this flower algorithm to solve multi-objective optimization problems in engineering. By using the weighted sum method with random weights, we show that the proposed multi-objective flower algorithm can accurately find the Pareto fronts for a set of test functions. We then solve a bi-objective disc brake design problem, which indeed converges quickly.
Abstract:Nature-inspired metaheuristic algorithms, especially those based on swarm intelligence, have attracted much attention in the last ten years. Firefly algorithm appeared in about five years ago, its literature has expanded dramatically with diverse applications. In this paper, we will briefly review the fundamentals of firefly algorithm together with a selection of recent publications. Then, we discuss the optimality associated with balancing exploration and exploitation, which is essential for all metaheuristic algorithms. By comparing with intermittent search strategy, we conclude that metaheuristics such as firefly algorithm are better than the optimal intermittent search strategy. We also analyse algorithms and their implications for higher-dimensional optimization problems.