Abstract:The El Ni{~n}o-Southern Oscillation (ENSO) exerts profound influence on global climate variability, yet its prediction remains a grand challenge. Recent advances in deep learning have significantly improved forecasting skill, but the opacity of these models hampers scientific trust and operational deployment. Here, we introduce a mathematically grounded interpretability framework based on bounded variation function. By rescuing the "dead" neurons from the saturation zone of the activation function, we enhance the model's expressive capacity. Our analysis reveals that ENSO predictability emerges dominantly from the tropical Pacific, with contributions from the Indian and Atlantic Oceans, consistent with physical understanding. Controlled experiments affirm the robustness of our method and its alignment with established predictors. Notably, we probe the persistent Spring Predictability Barrier (SPB), finding that despite expanded sensitivity during spring, predictive performance declines-likely due to suboptimal variable selection. These results suggest that incorporating additional ocean-atmosphere variables may help transcend SPB limitations and advance long-range ENSO prediction.
Abstract:Because of the limitations of the infrared imaging principle and the properties of infrared imaging systems, infrared images have some drawbacks, including a lack of details, indistinct edges, and a large amount of salt-andpepper noise. To improve the sparse characteristics of the image while maintaining the image edges and weakening staircase artifacts, this paper proposes a method that uses the Lp quasinorm instead of the L1 norm and for infrared image deblurring with an overlapping group sparse total variation method. The Lp quasinorm introduces another degree of freedom, better describes image sparsity characteristics, and improves image restoration. Furthermore, we adopt the accelerated alternating direction method of multipliers and fast Fourier transform theory in the proposed method to improve the efficiency and robustness of our algorithm. Experiments show that under different conditions for blur and salt-and-pepper noise, the proposed method leads to excellent performance in terms of objective evaluation and subjective visual results.