Abstract:Task-oriented dialogue systems are expected to handle a constantly expanding set of intents and domains even after they have been deployed to support more and more functionalities. To live up to this expectation, it becomes critical to mitigate the catastrophic forgetting problem (CF) that occurs in continual learning (CL) settings for a task such as intent recognition. While existing dialogue systems research has explored replay-based and regularization-based methods to this end, the effect of domain ordering on the CL performance of intent recognition models remains unexplored. If understood well, domain ordering has the potential to be an orthogonal technique that can be leveraged alongside existing techniques such as experience replay. Our work fills this gap by comparing the impact of three domain-ordering strategies (min-sum path, max-sum path, random) on the CL performance of a generative intent recognition model. Our findings reveal that the min-sum path strategy outperforms the others in reducing catastrophic forgetting when training on the 220M T5-Base model. However, this advantage diminishes with the larger 770M T5-Large model. These results underscores the potential of domain ordering as a complementary strategy for mitigating catastrophic forgetting in continually learning intent recognition models, particularly in resource-constrained scenarios.
Abstract:Natural Language Processing (NLP) plays a significant role in our daily lives and has become an essential part of Artificial Intelligence (AI) education in K-12. As children grow up with NLP-powered applications, it is crucial to introduce NLP concepts to them, fostering their understanding of language processing, language generation, and ethical implications of AI and NLP. This paper presents a comprehensive review of digital learning environments for teaching NLP in K-12. Specifically, it explores existing digital learning tools, discusses how they support specific NLP tasks and procedures, and investigates their explainability and evaluation results in educational contexts. By examining the strengths and limitations of these tools, this literature review sheds light on the current state of NLP learning tools in K-12 education. It aims to guide future research efforts to refine existing tools, develop new ones, and explore more effective and inclusive strategies for integrating NLP into K-12 educational contexts.
Abstract:Power dynamics in human-human communication can impact rapport-building and learning gains, but little is known about how power impacts human-agent communication. In this paper, we examine dominance behavior in utterances between middle-school students and a teachable robot as they work through math problems, as coded by Rogers and Farace's Relational Communication Control Coding Scheme (RCCCS). We hypothesize that relatively dominant students will show increased learning gains, as will students with greater dominance agreement with the robot. We also hypothesize that gender could be an indicator of difference in dominance behavior. We present a preliminary analysis of dominance characteristics in some of the transactions between robot and student. Ultimately, we hope to determine if manipulating the dominance behavior of a learning robot could support learning.