Abstract:A plethora of wearable devices have been developed or commercialized for continuous non-invasive monitoring of physiological signals that are crucial for preventive care and management of chronic conditions. However, most of these devices are either sensitive to skin conditions or its interface with the skin due to the requirement that the external stimuli such as light or electrical excitation must penetrate the skin to detect the pulse. This often results in large motion artefacts and unsuitability for certain skin conditions. Here, we demonstrate a simple fingertip-type device which can detect clear pulse signals under all conditions, including fingers covered by opaque substances such as a plaster or nail polish, or fingers immersed in liquid. The device has a very simple structure, consisting of only a pair of magnets and a magnetic sensor. We show through both experiments and simulations that the detected pulsation signals correspond directly to the magnet vibrations caused by blood circulation, and therefore, in addition to heartrate detection, the proposed device can also be potentially used for blood pressure measurement.
Abstract:Generative adversarial networks (GANs), trained on a large-scale image dataset, can be a good approximator of the natural image manifold. GAN-inversion, using a pre-trained generator as a deep generative prior, is a promising tool for image restoration under corruptions. However, the performance of GAN-inversion can be limited by a lack of robustness to unknown gross corruptions, i.e., the restored image might easily deviate from the ground truth. In this paper, we propose a Robust GAN-inversion (RGI) method with a provable robustness guarantee to achieve image restoration under unknown \textit{gross} corruptions, where a small fraction of pixels are completely corrupted. Under mild assumptions, we show that the restored image and the identified corrupted region mask converge asymptotically to the ground truth. Moreover, we extend RGI to Relaxed-RGI (R-RGI) for generator fine-tuning to mitigate the gap between the GAN learned manifold and the true image manifold while avoiding trivial overfitting to the corrupted input image, which further improves the image restoration and corrupted region mask identification performance. The proposed RGI/R-RGI method unifies two important applications with state-of-the-art (SOTA) performance: (i) mask-free semantic inpainting, where the corruptions are unknown missing regions, the restored background can be used to restore the missing content; (ii) unsupervised pixel-wise anomaly detection, where the corruptions are unknown anomalous regions, the retrieved mask can be used as the anomalous region's segmentation mask.
Abstract:Nearest-neighbor (NN) procedures are well studied and widely used in both supervised and unsupervised learning problems. In this paper we are concerned with investigating the performance of NN-based methods for anomaly detection. We first show through extensive simulations that NN methods compare favorably to some of the other state-of-the-art algorithms for anomaly detection based on a set of benchmark synthetic datasets. We further consider the performance of NN methods on real datasets, and relate it to the dimensionality of the problem. Next, we analyze the theoretical properties of NN-methods for anomaly detection by studying a more general quantity called distance-to-measure (DTM), originally developed in the literature on robust geometric and topological inference. We provide finite-sample uniform guarantees for the empirical DTM and use them to derive misclassification rates for anomalous observations under various settings. In our analysis we rely on Huber's contamination model and formulate mild geometric regularity assumptions on the underlying distribution of the data.