Abstract:Understanding and identifying musical shape plays an important role in music education and performance assessment. To simplify the otherwise time- and cost-intensive musical shape evaluation, in this paper we explore how artificial intelligence (AI) driven models can be applied. Considering musical shape evaluation as a classification problem, a light-weight Siamese residual neural network (S-ResNN) is proposed to automatically identify musical shapes. To assess the proposed approach in the context of piano musical shape evaluation, we have generated a new dataset, containing 4116 music pieces derived by 147 piano preparatory exercises and performed in 28 categories of musical shapes. The experimental results show that the S-ResNN significantly outperforms a number of benchmark methods in terms of the precision, recall and F1 score.
Abstract:As a major branch of Non-Photorealistic Rendering (NPR), image stylization mainly uses the computer algorithms to render a photo into an artistic painting. Recent work has shown that the extraction of style information such as stroke texture and color of the target style image is the key to image stylization. Given its stroke texture and color characteristics, a new stroke rendering method is proposed, which fully considers the tonal characteristics and the representative color of the original oil painting, in order to fit the tone of the original oil painting image into the stylized image and make it close to the artist's creative effect. The experiments have validated the efficacy of the proposed model. This method would be more suitable for the works of pointillism painters with a relatively uniform sense of direction, especially for natural scenes. When the original painting brush strokes have a clearer sense of direction, using this method to simulate brushwork texture features can be less satisfactory.