



Abstract:In the early stages of semiconductor equipment development, obtaining large quantities of raw optical images poses a significant challenge. This data scarcity hinder the advancement of AI-powered solutions in semiconductor manufacturing. To address this challenge, we introduce SinSEMI, a novel one-shot learning approach that generates diverse and highly realistic images from single optical image. SinSEMI employs a multi-scale flow-based model enhanced with LPIPS (Learned Perceptual Image Patch Similarity) energy guidance during sampling, ensuring both perceptual realism and output variety. We also introduce a comprehensive evaluation framework tailored for this application, which enables a thorough assessment using just two reference images. Through the evaluation against multiple one-shot generation techniques, we demonstrate SinSEMI's superior performance in visual quality, quantitative measures, and downstream tasks. Our experimental results demonstrate that SinSEMI-generated images achieve both high fidelity and meaningful diversity, making them suitable as training data for semiconductor AI applications.




Abstract:Image retrieval utilizes image descriptors to retrieve the most similar images to a given query image. Convolutional neural network (CNN) is becoming the dominant approach to extract image descriptors for image retrieval. For low-power hardware implementation of image retrieval, the drawback of CNN-based feature descriptor is that it requires hundreds of megabytes of storage. To address this problem, this paper applies deep model quantization and compression to CNN in ASIC chip for image retrieval. It is demonstrated that the CNN-based features descriptor can be extracted using as few as 2-bit weights quantization to deliver a similar performance as floating-point model for image retrieval. In addition, to implement CNN in ASIC, especially for large scale images, the limited buffer size of chips should be considered. To retrieve large scale images, we propose an improved pooling strategy, region nested invariance pooling (RNIP), which uses cropped sub-images for CNN. Testing results on chip show that integrating RNIP with the proposed 2-bit CNN model compression approach is capable of retrieving large scale images.