Abstract:CANDECOMP/PARAFAC (CP) decomposition is the mostly used model to formulate the received tensor signal in a multi-domain massive multiple-input multiple-output (MIMO) system, as the receiver generally sums the components from different paths or users. To achieve accurate and low-latency channel estimation, good and fast CP decomposition algorithms are desired. The CP alternating least squares (CPALS) is the workhorse algorithm for calculating the CP decomposition. However, its performance depends on the initializations, and good starting values can lead to more efficient solutions. Existing initialization strategies are decoupled from the CPALS and are not necessarily favorable for solving the CP decomposition. To enhance the algorithm's speed and accuracy, this paper proposes a deep-learning-aided CPALS (DL-CPALS) method that uses a deep neural network (DNN) to generate favorable initializations. The proposed DL-CPALS integrates the DNN and CPALS to a model-based deep learning paradigm, where it trains the DNN to generate an initialization that facilitates fast and accurate CP decomposition. Moreover, benefiting from the CP low-rankness, the proposed method is trained using noisy data and does not require paired clean data. The proposed DL-CPALS is applied to millimeter wave MIMO orthogonal frequency division multiplexing (mmWave MIMO-OFDM) channel estimation. Experimental results demonstrate the significant improvements of the proposed method in terms of both speed and accuracy for CP decomposition and channel estimation.
Abstract:Video surveillance is gaining increasing popularity to assist in railway intrusion detection in recent years. However, efficient and accurate intrusion detection remains a challenging issue due to: (a) limited sample number: only small sample size (or portion) of intrusive video frames is available; (b) low inter-scene dissimilarity: various railway track area scenes are captured by cameras installed in different landforms; (c) high intra-scene similarity: the video frames captured by an individual camera share a same backgound. In this paper, an efficient few-shot learning solution is developed to address the above issues. In particular, an enhanced model-agnostic meta-learner is trained using both the original video frames and segmented masks of track area extracted from the video. Moreover, theoretical analysis and engineering solutions are provided to cope with the highly similar video frames in the meta-model training phase. The proposed method is tested on realistic railway video dataset. Numerical results show that the enhanced meta-learner successfully adapts unseen scene with only few newly collected video frame samples, and its intrusion detection accuracy outperforms that of the standard randomly initialized supervised learning.