Abstract:We present an innovative of artificial intelligence with column chromatography, aiming to resolve inefficiencies and standardize data collection in chemical separation and purification domain. By developing an automated platform for precise data acquisition and employing advanced machine learning algorithms, we constructed predictive models to forecast key separation parameters, thereby enhancing the efficiency and quality of chromatographic processes. The application of transfer learning allows the model to adapt across various column specifications, broadening its utility. A novel metric, separation probability ($S_p$), quantifies the likelihood of effective compound separation, validated through experimental verification. This study signifies a significant step forward int the application of AI in chemical research, offering a scalable solution to traditional chromatography challenges and providing a foundation for future technological advancements in chemical analysis and purification.
Abstract:The ultra-reliable and low-latency communication (URLLC) service of the fifth-generation (5G) mobile communication network struggles to support safe robot operation. Nowadays, the sixth-generation (6G) mobile communication network is proposed to provide hyper-reliable and low-latency communication to enable safer control for robots. However, current 5G/ 6G research mainly focused on improving communication performance, while the robotics community mostly assumed communication to be ideal. To jointly consider communication and robotic control with a focus on the specific robotic task, we propose task-oriented and semantics-aware communication in robotic control (TSRC) to exploit the context of data and its importance in achieving the task at both transmitter and receiver. At the transmitter, we propose a deep reinforcement learning algorithm to generate optimal control and command (C&C) data and a proactive repetition scheme (DeepPro) to increase the successful transmission probability. At the receiver, we design the value of information (VoI) and age of information (AoI) based queue ordering mechanism (VA-QOM) to reorganize the queue based on the semantic information extracted from the AoI and the VoI. The simulation results validate that our proposed TSRC framework achieves a 91.5% improvement in the mean square error compared to the traditional unmanned aerial vehicle control framework.