Abstract:Accurate object perception is essential for robotic applications such as object navigation. In this paper, we propose DQO-MAP, a novel object-SLAM system that seamlessly integrates object pose estimation and reconstruction. We employ 3D Gaussian Splatting for high-fidelity object reconstruction and leverage quadrics for precise object pose estimation. Both of them management is handled on the CPU, while optimization is performed on the GPU, significantly improving system efficiency. By associating objects with unique IDs, our system enables rapid object extraction from the scene. Extensive experimental results on object reconstruction and pose estimation demonstrate that DQO-MAP achieves outstanding performance in terms of precision, reconstruction quality, and computational efficiency. The code and dataset are available at: https://github.com/LiHaoy-ux/DQO-MAP.
Abstract:In this paper we introduce MLINE-VINS, a novel monocular visual-inertial odometry (VIO) system that leverages line features and Manhattan Word assumption. Specifically, for line matching process, we propose a novel geometric line optical flow algorithm that efficiently tracks line features with varying lengths, whitch is do not require detections and descriptors in every frame. To address the instability of Manhattan estimation from line features, we propose a tracking-by-detection module that consistently tracks and optimizes Manhattan framse in consecutive images. By aligning the Manhattan World with the VIO world frame, the tracking could restart using the latest pose from back-end, simplifying the coordinate transformations within the system. Furthermore, we implement a mechanism to validate Manhattan frames and a novel global structural constraints back-end optimization. Extensive experiments results on vairous datasets, including benchmark and self-collected datasets, show that the proposed approach outperforms existing methods in terms of accuracy and long-range robustness. The source code of our method is available at: https://github.com/LiHaoy-ux/MLINE-VINS.
Abstract:Visual servo techniques guide robotic motion using visual information to accomplish manipulation tasks, requiring high precision and robustness against noise. Traditional methods often require prior knowledge and are susceptible to external disturbances. Learning-driven alternatives, while promising, frequently struggle with the scarcity of training data and fall short in generalization. To address these challenges, we propose a novel visual servo framework Depth-PC that leverages simulation training and exploits semantic and geometric information of keypoints from images, enabling zero-shot transfer to real-world servo tasks. Our framework focuses on the servo controller which intertwines keypoint feature queries and relative depth information. Subsequently, the fused features from these two modalities are then processed by a Graph Neural Network to establish geometric and semantic correspondence between keypoints and update the robot state. Through simulation and real-world experiments, our approach demonstrates superior convergence basin and accuracy compared to state-of-the-art methods, fulfilling the requirements for robotic servo tasks while enabling zero-shot application to real-world scenarios. In addition to the enhancements achieved with our proposed framework, we have also substantiated the efficacy of cross-modality feature fusion within the realm of servo tasks.