Abstract:Object 6D pose estimation is an important research topic in the field of computer vision due to its wide application requirements and the challenges brought by complexity and changes in the real-world. We think fully exploring the characteristics of spatial relationship between points will help to improve the pose estimation performance, especially in the scenes of background clutter and partial occlusion. But this information was usually ignored in previous work using RGB image or RGB-D data. In this paper, we propose a framework for 6D pose estimation from RGB-D data based on spatial structure characteristics of 3D keypoints. We adopt point-wise dense feature embedding to vote for 3D keypoints, which makes full use of the structure information of the rigid body. After the direction vectors pointing to the keypoints are predicted by CNN, we use RANSAC voting to calculate the coordinate of the 3D keypoints, then the pose transformation can be easily obtained by the least square method. In addition, a spatial dimension sampling strategy for points is employed, which makes the method achieve excellent performance on small training sets. The proposed method is verified on two benchmark datasets, LINEMOD and OCCLUSION LINEMOD. The experimental results show that our method outperforms the state-of-the-art approaches, achieves ADD(-S) accuracy of 98.7\% on LINEMOD dataset and 52.6\% on OCCLUSION LINEMOD dataset in real-time.
Abstract:Object 6D pose estimation is a fundamental task in many applications. Conventional methods solve the task by detecting and matching the keypoints, then estimating the pose. Recent efforts bringing deep learning into the problem mainly overcome the vulnerability of conventional methods to environmental variation due to the hand-crafted feature design. However, these methods cannot achieve end-to-end learning and good interpretability at the same time. In this paper, we propose REDE, a novel end-to-end object pose estimator using RGB-D data, which utilizes network for keypoint regression, and a differentiable geometric pose estimator for pose error back-propagation. Besides, to achieve better robustness when outlier keypoint prediction occurs, we further propose a differentiable outliers elimination method that regresses the candidate result and the confidence simultaneously. Via confidence weighted aggregation of multiple candidates, we can reduce the effect from the outliers in the final estimation. Finally, following the conventional method, we apply a learnable refinement process to further improve the estimation. The experimental results on three benchmark datasets show that REDE slightly outperforms the state-of-the-art approaches and is more robust to object occlusion.