Abstract:An image conveys meaning through both its visual content and emotional tone, jointly shaping human perception. We introduce Controllable Emotional Image Content Generation (C-EICG), which aims to generate images that remain faithful to a given content description while expressing a target emotion. Existing text-to-image models ensure content consistency but lack emotional awareness, whereas emotion-driven models generate affective results at the cost of content distortion. To address this gap, we propose EmoCtrl, supported by a dataset annotated with content, emotion, and affective prompts, bridging abstract emotions to visual cues. EmoCtrl incorporates textual and visual emotion enhancement modules that enrich affective expression via descriptive semantics and perceptual cues. The learned emotion tokens exhibit complementary effects, as demonstrated through ablations and visualizations. Quantatitive and qualatitive experiments demonstrate that EmoCtrl achieves faithful content and expressive emotion control, outperforming existing methods across multiple aspects. User studies confirm EmoCtrl's strong alignment with human preference. Moreover, EmoCtrl generalizes well to creative applications, further demonstrating the robustness and adaptability of the learned emotion tokens.




Abstract:Affective Image Manipulation (AIM) seeks to modify user-provided images to evoke specific emotional responses. This task is inherently complex due to its twofold objective: significantly evoking the intended emotion, while preserving the original image composition. Existing AIM methods primarily adjust color and style, often failing to elicit precise and profound emotional shifts. Drawing on psychological insights, we extend AIM by incorporating content modifications to enhance emotional impact. We introduce EmoEdit, a novel two-stage framework comprising emotion attribution and image editing. In the emotion attribution stage, we leverage a Vision-Language Model (VLM) to create hierarchies of semantic factors that represent abstract emotions. In the image editing stage, the VLM identifies the most relevant factors for the provided image, and guides a generative editing model to perform affective modifications. A ranking technique that we developed selects the best edit, balancing between emotion fidelity and structure integrity. To validate EmoEdit, we assembled a dataset of 416 images, categorized into positive, negative, and neutral classes. Our method is evaluated both qualitatively and quantitatively, demonstrating superior performance compared to existing state-of-the-art techniques. Additionally, we showcase EmoEdit's potential in various manipulation tasks, including emotion-oriented and semantics-oriented editing.