Abstract:Users in many domains use machine learning (ML) predictions to help them make decisions. Effective ML-based decision-making often requires explanations of ML models and their predictions. While there are many algorithms that explain models, generating explanations in a format that is comprehensible and useful to decision-makers is a nontrivial task that can require extensive development overhead. We developed Pyreal, a highly extensible system with a corresponding Python implementation for generating a variety of interpretable ML explanations. Pyreal converts data and explanations between the feature spaces expected by the model, relevant explanation algorithms, and human users, allowing users to generate interpretable explanations in a low-code manner. Our studies demonstrate that Pyreal generates more useful explanations than existing systems while remaining both easy-to-use and efficient.
Abstract:Through past experiences deploying what we call usable ML (one step beyond explainable ML, including both explanations and other augmenting information) to real-world domains, we have learned three key lessons. First, many organizations are beginning to hire people who we call ``bridges'' because they bridge the gap between ML developers and domain experts, and these people fill a valuable role in developing usable ML applications. Second, a configurable system that enables easily iterating on usable ML interfaces during collaborations with bridges is key. Finally, there is a need for continuous, in-deployment evaluations to quantify the real-world impact of usable ML. Throughout this paper, we apply these lessons to the task of wind turbine monitoring, an essential task in the renewable energy domain. Turbine engineers and data analysts must decide whether to perform costly in-person investigations on turbines to prevent potential cases of brakepad failure, and well-tuned usable ML interfaces can aid with this decision-making process. Through the applications of our lessons to this task, we hope to demonstrate the potential real-world impact of usable ML in the renewable energy domain.