Abstract:This work introduces a spike-based wearable analytics system utilizing Spiking Neural Networks (SNNs) deployed on an In-memory Computing engine based on RRAM crossbars, which are known for their compactness and energy-efficiency. Given the hardware constraints and noise characteristics of the underlying RRAM crossbars, we propose online adaptation of pre-trained SNNs in real-time using Direct Feedback Alignment (DFA) against traditional backpropagation (BP). Direct Feedback Alignment (DFA) learning, that allows layer-parallel gradient computations, acts as a fast, energy & area-efficient method for online adaptation of SNNs on RRAM crossbars, unleashing better algorithmic performance against those adapted using BP. Through extensive simulations using our in-house hardware evaluation engine called DFA_Sim, we find that DFA achieves upto 64.1% lower energy consumption, 10.1% lower area overhead, and a 2.1x reduction in latency compared to BP, while delivering upto 7.55% higher inference accuracy on human activity recognition (HAR) tasks.
Abstract:Functional Magnetic Resonance Imaging (fMRI) maps cerebral activation in response to stimuli but this activation is often difficult to detect, especially in low-signal contexts and single-subject studies. Accurate activation detection can be guided by the fact that very few voxels are, in reality, truly activated and that activated voxels are spatially localized, but it is challenging to incorporate both these facts. We provide a computationally feasible and methodologically sound model-based approach, implemented in the R package MixfMRI, that bounds the a priori expected proportion of activated voxels while also incorporating spatial context. Results on simulation experiments for different levels of activation detection difficulty are uniformly encouraging. The value of the methodology in low-signal and single-subject fMRI studies is illustrated on a sports imagination experiment. Concurrently, we also extend the potential use of fMRI as a clinical tool to, for example, detect awareness and improve treatment in individual patients in persistent vegetative state, such as traumatic brain injury survivors.