Abstract:The shift toward high-quality urbanization has brought increased attention to the issue of "urban villages", which has become a prominent social problem in China. However, there is a lack of available geospatial data on urban villages, making it crucial to prioritize urban village mapping. In order to assess the current progress in urban village mapping and identify challenges and future directions, we have conducted a comprehensive review, which to the best of our knowledge is the first of its kind in this field. Our review begins by providing a clear context for urban villages and elaborating the method for literature review, then summarizes the study areas, data sources, and approaches used for urban village mapping in China. We also address the challenges and future directions for further research. Through thorough investigation, we find that current studies only cover very limited study areas and periods and lack sufficient investigation into the scalability, transferability, and interpretability of identification approaches due to the challenges in concept fuzziness and variances, spatial heterogeneity and variances of urban villages, and data availability. Future research can complement and further the current research in the following potential directions in order to achieve large-area mapping across the whole nation...
Abstract:Parking demand forecasting and behaviour analysis have received increasing attention in recent years because of their critical role in mitigating traffic congestion and understanding travel behaviours. However, previous studies usually only consider temporal dependence but ignore the spatial correlations among parking lots for parking prediction. This is mainly due to the lack of direct physical connections or observable interactions between them. Thus, how to quantify the spatial correlation remains a significant challenge. To bridge the gap, in this study, we propose a spatial-aware parking prediction framework, which includes two steps, i.e. spatial connection graph construction and spatio-temporal forecasting. A case study in Ningbo, China is conducted using parking data of over one million records before and during COVID-19. The results show that the approach is superior on parking occupancy forecasting than baseline methods, especially for the cases with high temporal irregularity such as during COVID-19. Our work has revealed the impact of the pandemic on parking behaviour and also accentuated the importance of modelling spatial dependence in parking behaviour forecasting, which can benefit future studies on epidemiology and human travel behaviours.