Abstract:While the Self-Attention mechanism in the Transformer model has proven to be effective in many domains, we observe that it is less effective in more diverse settings (e.g. multimodality) due to the varying granularity of each token and the high computational demands of lengthy sequences. To address the challenges, we introduce the Learnable Attention Mask (LAM), strategically designed to globally regulate attention maps and prioritize critical tokens within the sequence. Leveraging the Self-Attention module in a BERT-like transformer network, our approach adeptly captures associations between tokens. The extension of the LAM to a multi-layer version accommodates the varied information aspects embedded at each layer of the Transformer network. Comprehensive experimental validation on various datasets, such as MADv2, QVHighlights, ImageNet 1K, and MSRVTT, demonstrates the efficacy of the LAM, exemplifying its ability to enhance model performance while mitigating redundant computations. This pioneering approach presents a significant advancement in enhancing the understanding of complex scenarios, such as in movie understanding.
Abstract:Talking face generation has gained immense popularity in the computer vision community, with various applications including AR/VR, teleconferencing, digital assistants, and avatars. Traditional methods are mainly audio-driven ones which have to deal with the inevitable resource-intensive nature of audio storage and processing. To address such a challenge, we propose FT2TF - First-Person Statement Text-To-Talking Face Generation, a novel one-stage end-to-end pipeline for talking face generation driven by first-person statement text. Moreover, FT2TF implements accurate manipulation of the facial expressions by altering the corresponding input text. Different from previous work, our model only leverages visual and textual information without any other sources (e.g. audio/landmark/pose) during inference. Extensive experiments are conducted on LRS2 and LRS3 datasets, and results on multi-dimensional evaluation metrics are reported. Both quantitative and qualitative results showcase that FT2TF outperforms existing relevant methods and reaches the state-of-the-art. This achievement highlights our model capability to bridge first-person statements and dynamic face generation, providing insightful guidance for future work.
Abstract:The recent introduction of the large-scale long-form MAD dataset for language grounding in videos has enabled researchers to investigate the performance of current state-of-the-art methods in the long-form setup, with unexpected findings. In fact, current grounding methods alone fail at tackling this challenging task and setup due to their inability to process long video sequences. In this work, we propose an effective way to circumvent the long-form burden by introducing a new component to grounding pipelines: a Guidance model. The purpose of the Guidance model is to efficiently remove irrelevant video segments from the search space of grounding methods by coarsely aligning the sentence to chunks of the movies and then applying legacy grounding methods where high correlation is found. We term these video segments as non-describable moments. This two-stage approach reveals to be effective in boosting the performance of several different grounding baselines on the challenging MAD dataset, achieving new state-of-the-art performance.