Abstract:This paper presents a comprehensive analysis of both conventional and deep learning methods for eliminating electromagnetic interference (EMI) in MRI systems. We explore the underlying principles and implementation of traditional analytical and adaptive EMI elimination techniques, as well as cutting-edge deep learning approaches. Through a detailed comparison, the strengths and limitations of each method are highlighted. Recent advancements in active EMI elimination utilizing multiple external EMI receiver coils and analytical techniques are discussed alongside the superior performance of deep learning methods, which leverage neural networks trained on extensive MRI data. While deep learning methods demonstrate significant improvements in EMI suppression, enhancing diagnostic capabilities and accessibility of MRI technology, they also introduce potential security and safety concerns, especially in production and commercial applications. This study underscores the need to address these challenges to fully realize the benefits of deep learning in EMI elimination. The findings suggest a balanced approach, combining the reliability of conventional methods with the advanced capabilities of deep learning, to develop more robust and effective EMI suppression strategies in MRI systems.
Abstract:Magnetic resonance imaging (MRI) is renowned for its exceptional soft tissue contrast and high spatial resolution, making it a pivotal tool in medical imaging. The integration of deep learning algorithms offers significant potential for optimizing MRI reconstruction processes. Despite the growing body of research in this area, a comprehensive survey of optimization-based deep learning models tailored for MRI reconstruction has yet to be conducted. This review addresses this gap by presenting a thorough examination of the latest optimization-based algorithms in deep learning specifically designed for MRI reconstruction. The goal of this paper is to provide researchers with a detailed understanding of these advancements, facilitating further innovation and application within the MRI community.
Abstract:Using single-task deep learning methods to reconstruct Magnetic Resonance Imaging (MRI) data acquired with different imaging sequences is inherently challenging. The trained deep learning model typically lacks generalizability, and the dissimilarity among image datasets with different types of contrast leads to suboptimal learning performance. This paper proposes a meta-learning approach to efficiently learn image features from multiple MR image datasets. Our algorithm can perform multi-task learning to simultaneously reconstruct MR images acquired using different imaging sequences with different image contrasts. The experiment results demonstrate the ability of our new meta-learning reconstruction method to successfully reconstruct highly-undersampled k-space data from multiple MRI datasets simultaneously, outperforming other compelling reconstruction methods previously developed for single-task learning.
Abstract:This study introduces a novel approach for image reconstruction based on a diffusion model conditioned on the native data domain. Our method is applied to multi-coil MRI and quantitative MRI reconstruction, leveraging the domain-conditioned diffusion model within the frequency and parameter domains. The prior MRI physics are used as embeddings in the diffusion model, enforcing data consistency to guide the training and sampling process, characterizing MRI k-space encoding in MRI reconstruction, and leveraging MR signal modeling for qMRI reconstruction. Furthermore, a gradient descent optimization is incorporated into the diffusion steps, enhancing feature learning and improving denoising. The proposed method demonstrates a significant promise, particularly for reconstructing images at high acceleration factors. Notably, it maintains great reconstruction accuracy and efficiency for static and quantitative MRI reconstruction across diverse anatomical structures. Beyond its immediate applications, this method provides potential generalization capability, making it adaptable to inverse problems across various domains.
Abstract:This paper proposes a novel self-supervised learning method, RELAX-MORE, for quantitative MRI (qMRI) reconstruction. The proposed method uses an optimization algorithm to unroll a model-based qMRI reconstruction into a deep learning framework, enabling the generation of highly accurate and robust MR parameter maps at imaging acceleration. Unlike conventional deep learning methods requiring a large amount of training data, RELAX-MORE is a subject-specific method that can be trained on single-subject data through self-supervised learning, making it accessible and practically applicable to many qMRI studies. Using the quantitative $T_1$ mapping as an example at different brain, knee and phantom experiments, the proposed method demonstrates excellent performance in reconstructing MR parameters, correcting imaging artifacts, removing noises, and recovering image features at imperfect imaging conditions. Compared with other state-of-the-art conventional and deep learning methods, RELAX-MORE significantly improves efficiency, accuracy, robustness, and generalizability for rapid MR parameter mapping. This work demonstrates the feasibility of a new self-supervised learning method for rapid MR parameter mapping, with great potential to enhance the clinical translation of qMRI.
Abstract:This dissertation is devoted to provide advanced nonconvex nonsmooth variational models of (Magnetic Resonance Image) MRI reconstruction, efficient learnable image reconstruction algorithms and parameter training algorithms that improve the accuracy and robustness of the optimization-based deep learning methods for compressed sensing MRI reconstruction and synthesis. The first part introduces a novel optimization based deep neural network whose architecture is inspired by proximal gradient descent for solving a variational model. The second part is a substantial extension of the preliminary work in the first part by solving the calibration-free fast pMRI reconstruction problem in a discrete-time optimal control framework. The third part aims at developing a generalizable Magnetic Resonance Imaging (MRI) reconstruction method in the meta-learning framework. The last part aims to synthesize target modality of MRI by using partially scanned k-space data from source modalities instead of fully scanned data that is used in the state-of-the-art multimodal synthesis.
Abstract:Generating multi-contrasts/modal MRI of the same anatomy enriches diagnostic information but is limited in practice due to excessive data acquisition time. In this paper, we propose a novel deep-learning model for joint reconstruction and synthesis of multi-modal MRI using incomplete k-space data of several source modalities as inputs. The output of our model includes reconstructed images of the source modalities and high-quality image synthesized in the target modality. Our proposed model is formulated as a variational problem that leverages several learnable modality-specific feature extractors and a multimodal synthesis module. We propose a learnable optimization algorithm to solve this model, which induces a multi-phase network whose parameters can be trained using multi-modal MRI data. Moreover, a bilevel-optimization framework is employed for robust parameter training. We demonstrate the effectiveness of our approach using extensive numerical experiments.
Abstract:Purpose: This work aims at developing a generalizable MRI reconstruction model in the meta-learning framework. The standard benchmarks in meta-learning are challenged by learning on diverse task distributions. The proposed network learns the regularization function in a variational model and reconstructs MR images with various under-sampling ratios or patterns that may or may not be seen in the training data by leveraging a heterogeneous dataset. Methods: We propose an unrolling network induced by learnable optimization algorithms (LOA) for solving our nonconvex nonsmooth variational model for MRI reconstruction. In this model, the learnable regularization function contains a task-invariant common feature encoder and task-specific learner represented by a shallow network. To train the network we split the training data into two parts: training and validation, and introduce a bilevel optimization algorithm. The lower-level optimization trains task-invariant parameters for the feature encoder with fixed parameters of the task-specific learner on the training dataset, and the upper-level optimizes the parameters of the task-specific learner on the validation dataset. Results: The average PSNR increases significantly compared to the network trained through conventional supervised learning on the seen CS ratios. We test the result of quick adaption on the unseen tasks after meta-training and in the meanwhile saving half of the training time; Conclusion: We proposed a meta-learning framework consisting of the base network architecture, design of regularization, and bi-level optimization-based training. The network inherits the convergence property of the LOA and interpretation of the variational model. The generalization ability is improved by the designated regularization and bilevel optimization-based training algorithm.
Abstract:Goal: This work aims at developing a novel calibration-free fast parallel MRI (pMRI) reconstruction method incorporate with discrete-time optimal control framework. The reconstruction model is designed to learn a regularization that combines channels and extracts features by leveraging the information sharing among channels of multi-coil images. We propose to recover both magnitude and phase information by taking advantage of structured multiplayer convolutional networks in image and Fourier spaces. Methods: We develop a novel variational model with a learnable objective function that integrates an adaptive multi-coil image combination operator and effective image regularization in the image and Fourier spaces. We cast the reconstruction network as a structured discrete-time optimal control system, resulting in an optimal control formulation of parameter training where the parameters of the objective function play the role of control variables. We demonstrate that the Lagrangian method for solving the control problem is equivalent to back-propagation, ensuring the local convergence of the training algorithm. Results: We conduct a large number of numerical experiments of the proposed method with comparisons to several state-of-the-art pMRI reconstruction networks on real pMRI datasets. The numerical results demonstrate the promising performance of the proposed method evidently. Conclusion: The proposed method provides a general deep network design and training framework for efficient joint-channel pMRI reconstruction. Significance: By learning multi-coil image combination operator and performing regularizations in both image domain and k-space domain, the proposed method achieves a highly efficient image reconstruction network for pMRI.
Abstract:We propose a novel deep neural network architecture by mapping the robust proximal gradient scheme for fast image reconstruction in parallel MRI (pMRI) with regularization function trained from data. The proposed network learns to adaptively combine the multi-coil images from incomplete pMRI data into a single image with homogeneous contrast, which is then passed to a nonlinear encoder to efficiently extract sparse features of the image. Unlike most of existing deep image reconstruction networks, our network does not require knowledge of sensitivity maps, which can be difficult to estimate accurately, and have been a major bottleneck of image reconstruction in real-world pMRI applications. The experimental results demonstrate the promising performance of our method on a variety of pMRI imaging data sets.