Abstract:Sponge attacks increasingly threaten LLM systems by inducing excessive computation and DoS. Existing defenses either rely on statistical filters that fail on semantically meaningful attacks or use static LLM-based detectors that struggle to adapt as attack strategies evolve. We introduce SHIELD, a multi-agent, auto-healing defense framework centered on a three-stage Defense Agent that integrates semantic similarity retrieval, pattern matching, and LLM-based reasoning. Two auxiliary agents, a Knowledge Updating Agent and a Prompt Optimization Agent, form a closed self-healing loop, when an attack bypasses detection, the system updates an evolving knowledgebase, and refines defense instructions. Extensive experiments show that SHIELD consistently outperforms perplexity-based and standalone LLM defenses, achieving high F1 scores across both non-semantic and semantic sponge attacks, demonstrating the effectiveness of agentic self-healing against evolving resource-exhaustion threats.
Abstract:Large language models (LLMs) can be driven into over-generation, emitting thousands of tokens before producing an end-of-sequence (EOS) token. This degrades answer quality, inflates latency and cost, and can be weaponized as a denial-of-service (DoS) attack. Recent work has begun to study DoS-style prompt attacks, but typically focuses on a single attack algorithm or assumes white-box access, without an attack-side benchmark that compares prompt-based attackers in a black-box, query-only regime with a known tokenizer. We introduce such a benchmark and study two prompt-only attackers. The first is Evolutionary Over-Generation Prompt Search (EOGen), which searches the token space for prefixes that suppress EOS and induce long continuations. The second is a goal-conditioned reinforcement learning attacker (RL-GOAL) that trains a network to generate prefixes conditioned on a target length. To characterize behavior, we introduce Over-Generation Factor (OGF), the ratio of produced tokens to a model's context window, along with stall and latency summaries. Our evolutionary attacker achieves mean OGF = 1.38 +/- 1.15 and Success@OGF >= 2 of 24.5 percent on Phi-3. RL-GOAL is stronger: across victims it achieves higher mean OGF (up to 2.81 +/- 1.38).
Abstract:The field of textual adversarial defenses has gained considerable attention in recent years due to the increasing vulnerability of natural language processing (NLP) models to adversarial attacks, which exploit subtle perturbations in input text to deceive models. This paper introduces the Defensive Dual Masking (DDM) algorithm, a novel approach designed to enhance model robustness against such attacks. DDM utilizes a unique adversarial training strategy where [MASK] tokens are strategically inserted into training samples to prepare the model to handle adversarial perturbations more effectively. During inference, potentially adversarial tokens are dynamically replaced with [MASK] tokens to neutralize potential threats while preserving the core semantics of the input. The theoretical foundation of our approach is explored, demonstrating how the selective masking mechanism strengthens the model's ability to identify and mitigate adversarial manipulations. Our empirical evaluation across a diverse set of benchmark datasets and attack mechanisms consistently shows that DDM outperforms state-of-the-art defense techniques, improving model accuracy and robustness. Moreover, when applied to Large Language Models (LLMs), DDM also enhances their resilience to adversarial attacks, providing a scalable defense mechanism for large-scale NLP applications.