Abstract:In this paper, we investigate joint 3-dimensional (3D) trajectory planning and resource allocation for rotary-wing unmanned aerial vehicle (UAV) synthetic aperture radar (SAR) sensing. To support emerging real-time SAR applications and enable live mission control, we incorporate real-time communication with a ground station (GS). The UAV's main mission is the mapping of large areas of interest (AoIs) using an onboard SAR system and transferring the unprocessed raw radar data to the ground in real time. We propose a robust trajectory and resource allocation design that takes into account random UAV trajectory deviations. To this end, we model the UAV trajectory deviations and study their effect on the radar coverage. Then, we formulate a robust non-convex mixed-integer non-linear program (MINLP) such that the UAV 3D trajectory and resources are jointly optimized for maximization of the radar ground coverage. A low-complexity sub-optimal solution for the formulated problem is presented. Furthermore, to assess the performance of the sub-optimal algorithm, we derive an upper bound on the optimal solution based on monotonic optimization theory. Simulation results show that the proposed sub-optimal algorithm achieves close-to-optimal performance and not only outperforms several benchmark schemes but is also robust with respect to UAV trajectory deviations.
Abstract:This paper investigates the resource allocation algorithm design for wireless systems assisted by large intelligent reflecting surfaces (IRSs) with coexisting enhanced mobile broadband (eMBB) and ultra reliable low-latency communication (URLLC) users. We consider a two-time scale resource allocation scheme, whereby the base station's precoders are optimized in each mini-slot to adapt to newly arriving URLLC traffic, whereas the IRS phase shifts are reconfigured only in each time slot to avoid excessive base station-IRS signaling. To facilitate efficient resource allocation design for large IRSs, we employ a codebook-based optimization framework, where the IRS is divided into several tiles and the phase-shift elements of each tile are selected from a pre-defined codebook. The resource allocation algorithm design is formulated as an optimization problem for the maximization of the average sum data rate of the eMBB users over a time slot while guaranteeing the quality-of-service (QoS) of each URLLC user in each mini-slot. An iterative algorithm based on alternating optimization (AO) is proposed to find a high-quality suboptimal solution. As a case study, the proposed algorithm is applied in an industrial indoor environment modelled via the Quadriga channel simulator. Our simulation results show that the proposed algorithm design enables the coexistence of eMBB and URLLC users and yields large performance gains compared to three baseline schemes. Furthermore, our simulation results reveal that the proposed two-time scale resource allocation design incurs only a small performance loss compared to the case when the IRSs are optimized in each mini-slot.
Abstract:In this paper, we focus on large intelligent reflecting surfaces (IRSs) and propose a new codebook construction method to obtain a set of pre-designed phase-shift configurations for the IRS unit cells. Since the complexity of online optimization and the overhead for channel estimation for IRS-assisted communications scale with the size of the phase-shift codebook, the design of small codebooks is of high importance. We consider both continuous and discrete phase shift designs and formulate the codebook construction as optimization problems. To solve the optimization problems, we propose an optimal algorithm for the discrete phaseshift design and a low-complexity sub-optimal solution for the continuous design. Simulation results show that the proposed algorithms facilitate the construction of codebooks of different sizes and with different beamwidths. Moreover, the performance of the discrete phase-shift design with 2-bit quantization is shown to approach that of the continuous phase-shift design. Finally, our simulation results show that the proposed designs enable large transmit power savings compared to the existing linear and quadratic codebook designs.