Abstract:Recent advancements in large language models (LLMs) have significantly enhanced their ability to understand both natural language and code, driving their use in tasks like natural language-to-code (NL2Code) and code summarization. However, LLMs are prone to hallucination-outputs that stray from intended meanings. Detecting hallucinations in code summarization is especially difficult due to the complex interplay between programming and natural languages. We introduce a first-of-its-kind dataset with $\sim$10K samples, curated specifically for hallucination detection in code summarization. We further propose a novel Entity Tracing Framework (ETF) that a) utilizes static program analysis to identify code entities from the program and b) uses LLMs to map and verify these entities and their intents within generated code summaries. Our experimental analysis demonstrates the effectiveness of the framework, leading to a 0.73 F1 score. This approach provides an interpretable method for detecting hallucinations by grounding entities, allowing us to evaluate summary accuracy.
Abstract:Persuasivenes is a creative art aimed at making people believe in certain set of beliefs. Many a times, such creativity is about adapting richness of one domain into another to strike a chord with the target audience. In this research, we present PersuAIDE! - A persuasive system based on linguistic creativity to transform given sentence to generate various forms of persuading sentences. These various forms cover multiple focus of persuasion such as memorability and sentiment. For a given simple product line, the algorithm is composed of several steps including: (i) select an appropriate well-known expression for the target domain to add memorability, (ii) identify keywords and entities in the given sentence and expression and transform it to produce creative persuading sentence, and (iii) adding positive or negative sentiment for further persuasion. The persuasive conversion were manually verified using qualitative results and the effectiveness of the proposed approach is empirically discussed.