Abstract:The localization of Unmanned aerial vehicles (UAVs) in deep tunnels is extremely challenging due to their inaccessibility and hazardous environment. Conventional outdoor localization techniques (such as using GPS) and indoor localization techniques (such as those based on WiFi, Infrared (IR), Ultra-Wideband, etc.) do not work in deep tunnels. We are developing a UAV-based system for the inspection of defects in the Deep Tunnel Sewerage System (DTSS) in Singapore. To enable the UAV localization in the DTSS, we have developed a distance measurement module based on the optical flow technique. However, the standard optical flow technique does not work well in tunnels with poor lighting and a lack of features. Thus, we have developed an enhanced optical flow algorithm with prediction, to improve the distance measurement for UAVs in deep hazardous tunnels.
Abstract:Argument Mining (AM) is a crucial aspect of computational argumentation, which deals with the identification and extraction of Argumentative Components (ACs) and their corresponding Argumentative Relations (ARs). Most prior works have solved these problems by dividing them into multiple subtasks. And the available end-to-end setups are mostly based on the dependency parsing approach. This work proposes a unified end-to-end framework based on a generative paradigm, in which the argumentative structures are framed into label-augmented text, called Augmented Natural Language (ANL). Additionally, we explore the role of different types of markers in solving AM tasks. Through different marker-based fine-tuning strategies, we present an extensive study by integrating marker knowledge into our generative model. The proposed framework achieves competitive results to the state-of-the-art (SoTA) model and outperforms several baselines.
Abstract:This compilation of various research paper highlights provides a comprehensive overview of recent developments in super-resolution image and video using deep learning algorithms such as Generative Adversarial Networks. The studies covered in these summaries provide fresh techniques to addressing the issues of improving image and video quality, such as recursive learning for video super-resolution, novel loss functions, frame-rate enhancement, and attention model integration. These approaches are frequently evaluated using criteria such as PSNR, SSIM, and perceptual indices. These advancements, which aim to increase the visual clarity and quality of low-resolution video, have tremendous potential in a variety of sectors ranging from surveillance technology to medical imaging. In addition, this collection delves into the wider field of Generative Adversarial Networks, exploring their principles, training approaches, and applications across a broad range of domains, while also emphasizing the challenges and opportunities for future research in this rapidly advancing and changing field of artificial intelligence.