Abstract:Deep learning has been widely used for supervised learning and classification/regression problems. Recently, a novel area of research has applied this paradigm to unsupervised tasks; indeed, a gradient-based approach extracts, efficiently and autonomously, the relevant features for handling input data. However, state-of-the-art techniques focus mostly on algorithmic efficiency and accuracy rather than mimic the input manifold. On the contrary, competitive learning is a powerful tool for replicating the input distribution topology. This paper introduces a novel perspective in this area by combining these two techniques: unsupervised gradient-based and competitive learning. The theory is based on the intuition that neural networks are able to learn topological structures by working directly on the transpose of the input matrix. At this purpose, the vanilla competitive layer and its dual are presented. The former is just an adaptation of a standard competitive layer for deep clustering, while the latter is trained on the transposed matrix. Their equivalence is extensively proven both theoretically and experimentally. However, the dual layer is better suited for handling very high-dimensional datasets. The proposed approach has a great potential as it can be generalized to a vast selection of topological learning tasks, such as non-stationary and hierarchical clustering; furthermore, it can also be integrated within more complex architectures such as autoencoders and generative adversarial networks.
Abstract:Topological learning is a wide research area aiming at uncovering the mutual spatial relationships between the elements of a set. Some of the most common and oldest approaches involve the use of unsupervised competitive neural networks. However, these methods are not based on gradient optimization which has been proven to provide striking results in feature extraction also in unsupervised learning. Unfortunately, by focusing mostly on algorithmic efficiency and accuracy, deep clustering techniques are composed of overly complex feature extractors, while using trivial algorithms in their top layer. The aim of this work is to present a novel comprehensive theory aspiring at bridging competitive learning with gradient-based learning, thus allowing the use of extremely powerful deep neural networks for feature extraction and projection combined with the remarkable flexibility and expressiveness of competitive learning. In this paper we fully demonstrate the theoretical equivalence of two novel gradient-based competitive layers. Preliminary experiments show how the dual approach, trained on the transpose of the input matrix i.e. $X^T$, lead to faster convergence rate and higher training accuracy both in low and high-dimensional scenarios.