Abstract:There is currently considerable excitement within government about the potential of artificial intelligence to improve public service productivity through the automation of complex but repetitive bureaucratic tasks, freeing up the time of skilled staff. Here, we explore the size of this opportunity, by mapping out the scale of citizen-facing bureaucratic decision-making procedures within UK central government, and measuring their potential for AI-driven automation. We estimate that UK central government conducts approximately one billion citizen-facing transactions per year in the provision of around 400 services, of which approximately 143 million are complex repetitive transactions. We estimate that 84% of these complex transactions are highly automatable, representing a huge potential opportunity: saving even an average of just one minute per complex transaction would save the equivalent of approximately 1,200 person-years of work every year. We also develop a model to estimate the volume of transactions a government service undertakes, providing a way for government to avoid conducting time consuming transaction volume measurements. Finally, we find that there is high turnover in the types of services government provide, meaning that automation efforts should focus on general procedures rather than services themselves which are likely to evolve over time. Overall, our work presents a novel perspective on the structure and functioning of modern government, and how it might evolve in the age of artificial intelligence.
Abstract:Oversight is rightly recognised as vital within high-stakes public sector AI applications, where decisions can have profound individual and collective impacts. Much current thinking regarding forms of oversight mechanisms for AI within the public sector revolves around the idea of human decision makers being 'in-the-loop' and thus being able to intervene to prevent errors and potential harm. However, in a number of high-stakes public sector contexts, operational oversight of decisions is made by expert teams rather than individuals. The ways in which deployed AI systems can be integrated into these existing operational team oversight processes has yet to attract much attention. We address this gap by exploring the impacts of AI upon pre-existing oversight of clinical decision-making through institutional analysis. We find that existing oversight is nested within professional training requirements and relies heavily upon explanation and questioning to elicit vital information. Professional bodies and liability mechanisms also act as additional levers of oversight. These dimensions of oversight are impacted, and potentially reconfigured, by AI systems. We therefore suggest a broader lens of 'team-in-the-loop' to conceptualise the system-level analysis required for adoption of AI within high-stakes public sector deployment.
Abstract:Calls for new metrics, technical standards and governance mechanisms to guide the adoption of Artificial Intelligence (AI) in institutions and public administration are now commonplace. Yet, most research and policy efforts aimed at understanding the implications of adopting AI tend to prioritize only a handful of ideas; they do not fully account for all the different perspectives and topics that are potentially relevant. In this position paper, we contend that this omission stems, in part, from what we call the relational problem in socio-technical discourse: fundamental ontological issues have not yet been settled-including semantic ambiguity, a lack of clear relations between concepts and differing standard terminologies. This contributes to the persistence of disparate modes of reasoning to assess institutional AI systems, and the prevalence of conceptual isolation in the fields that study them including ML, human factors, social science and policy. After developing this critique, we offer a way forward by proposing a simple policy and research design tool in the form of a conceptual framework to organize terms across fields-consisting of three horizontal domains for grouping relevant concepts and related methods: Operational, epistemic, and normative. We first situate this framework against the backdrop of recent socio-technical discourse at two premier academic venues, AIES and FAccT, before illustrating how developing suitable metrics, standards, and mechanisms can be aided by operationalizing relevant concepts in each of these domains. Finally, we outline outstanding questions for developing this relational approach to institutional AI research and adoption.
Abstract:Recent advances in artificial intelligence (AI) and machine learning (ML) hold the promise of improving government. Given the advanced capabilities of AI applications, it is critical that these are embedded using standard operational procedures, clear epistemic criteria, and behave in alignment with the normative expectations of society. Scholars in multiple domains have subsequently begun to conceptualize the different forms that AI systems may take, highlighting both their potential benefits and pitfalls. However, the literature remains fragmented, with researchers in social science disciplines like public administration and political science, and the fast-moving fields of AI, ML, and robotics, all developing concepts in relative isolation. Although there are calls to formalize the emerging study of AI in government, a balanced account that captures the full breadth of theoretical perspectives needed to understand the consequences of embedding AI into a public sector context is lacking. Here, we unify efforts across social and technical disciplines by using concept mapping to identify 107 different terms used in the multidisciplinary study of AI. We inductively sort these into three distinct semantic groups, which we label the (a) operational, (b) epistemic, and (c) normative domains. We then build on the results of this mapping exercise by proposing three new multifaceted concepts to study AI-based systems for government (AI-GOV) in an integrated, forward-looking way, which we call (1) operational fitness, (2) epistemic completeness, and (3) normative salience. Finally, we put these concepts to work by using them as dimensions in a conceptual typology of AI-GOV and connecting each with emerging AI technical measurement standards to encourage operationalization, foster cross-disciplinary dialogue, and stimulate debate among those aiming to reshape public administration with AI.