Abstract:In this paper, we describe our autonomous bidding agent, RoxyBot, who emerged victorious in the travel division of the 2006 Trading Agent Competition in a photo finish. At a high level, the design of many successful trading agents can be summarized as follows: (i) price prediction: build a model of market prices; and (ii) optimization: solve for an approximately optimal set of bids, given this model. To predict, RoxyBot builds a stochastic model of market prices by simulating simultaneous ascending auctions. To optimize, RoxyBot relies on the sample average approximation method, a stochastic optimization technique.
Abstract:Social networks are increasingly being used to conduct polls. We introduce a simple model of such social polling. We suppose agents vote sequentially, but the order in which agents choose to vote is not necessarily fixed. We also suppose that an agent's vote is influenced by the votes of their friends who have already voted. Despite its simplicity, this model provides useful insights into a number of areas including social polling, sequential voting, and manipulation. We prove that the number of candidates and the network structure affect the computational complexity of computing which candidate necessarily or possibly can win in such a social poll. For social networks with bounded treewidth and a bounded number of candidates, we provide polynomial algorithms for both problems. In other cases, we prove that computing which candidates necessarily or possibly win are computationally intractable.