Abstract:We present a novel deep learning method for fully automated detection and classification of the Cervical Vertebrae Maturation (CVM) stages. The deep convolutional neural network consists of three parallel networks (TriPodNet) independently trained with different initialization parameters. They also have a built-in set of novel directional filters that highlight the Cervical Verte edges in X-ray images. Outputs of the three parallel networks are combined using a fully connected layer. 1018 cephalometric radiographs were labeled, divided by gender, and classified according to the CVM stages. Resulting images, using different training techniques and patches, were used to train TripodNet together with a set of tunable directional edge enhancers. Data augmentation is implemented to avoid overfitting. TripodNet achieves the state-of-the-art accuracy of 81.18\% in female patients and 75.32\% in male patients. The proposed TripodNet achieves a higher accuracy in our dataset than the Swin Transformers and the previous network models that we investigated for CVM stage estimation.
Abstract:We propose a Multi-vAlue Rule Set (MRS) model for in-hospital predicting patient mortality. Compared to rule sets built from single-valued rules, MRS adopts a more generalized form of association rules that allows multiple values in a condition. Rules of this form are more concise than classical single-valued rules in capturing and describing patterns in data. Our formulation also pursues a higher efficiency of feature utilization, which reduces possible cost in data collection and storage. We propose a Bayesian framework for formulating a MRS model and propose an efficient inference method for learning a maximum \emph{a posteriori}, incorporating theoretically grounded bounds to iteratively reduce the search space and improve the search efficiency. Experiments show that our model was able to achieve better performance than baseline method including the current system used by the hospital.