Abstract:Automated hand gesture recognition has been a focus of the AI community for decades. Traditionally, work in this domain revolved largely around scenarios assuming the availability of the flow of images of the user hands. This has partly been due to the prevalence of camera-based devices and the wide availability of image data. However, there is growing demand for gesture recognition technology that can be implemented on low-power devices using limited sensor data instead of high-dimensional inputs like hand images. In this work, we demonstrate a hand gesture recognition system and method that uses signals from capacitive sensors embedded into the etee hand controller. The controller generates real-time signals from each of the wearer five fingers. We use a machine learning technique to analyse the time series signals and identify three features that can represent 5 fingers within 500 ms. The analysis is composed of a two stage training strategy, including dimension reduction through principal component analysis and classification with K nearest neighbour. Remarkably, we found that this combination showed a level of performance which was comparable to more advanced methods such as supervised variational autoencoder. The base system can also be equipped with the capability to learn from occasional errors by providing it with an additional adaptive error correction mechanism. The results showed that the error corrector improve the classification performance in the base system without compromising its performance. The system requires no more than 1 ms of computing time per input sample, and is smaller than deep neural networks, demonstrating the feasibility of agile gesture recognition systems based on this technology.
Abstract:This paper is the final part of the scientific discussion organised by the Journal "Physics of Life Rviews" about the simplicity revolution in neuroscience and AI. This discussion was initiated by the review paper "The unreasonable effectiveness of small neural ensembles in high-dimensional brain". Phys Life Rev 2019, doi 10.1016/j.plrev.2018.09.005, arXiv:1809.07656. The topics of the discussion varied from the necessity to take into account the difference between the theoretical random distributions and "extremely non-random" real distributions and revise the common machine learning theory, to different forms of the curse of dimensionality and high-dimensional pitfalls in neuroscience. V. K{\r{u}}rkov{\'a}, A. Tozzi and J.F. Peters, R. Quian Quiroga, P. Varona, R. Barrio, G. Kreiman, L. Fortuna, C. van Leeuwen, R. Quian Quiroga, and V. Kreinovich, A.N. Gorban, V.A. Makarov, and I.Y. Tyukin participated in the discussion. In this paper we analyse the symphony of opinions and the possible outcomes of the simplicity revolution for machine learning and neuroscience.