Abstract:The transition to sustainable Open Radio Access Network (O-RAN) architectures brings new challenges for resource management, especially in predicting the utilization of Physical Resource Block (PRB)s. In this paper, we propose a novel approach to characterize the PRB load using probabilistic forecasting techniques. First, we provide background information on the O-RAN architecture and components and emphasize the importance of energy/power consumption models for sustainable implementations. The problem statement highlights the need for accurate PRB load prediction to optimize resource allocation and power efficiency. We then investigate probabilistic forecasting techniques, including Simple-Feed-Forward (SFF), DeepAR, and Transformers, and discuss their likelihood model assumptions. The simulation results show that DeepAR estimators predict the PRBs with less uncertainty and effectively capture the temporal dependencies in the dataset compared to SFF- and Transformer-based models, leading to power savings. Different percentile selections can also increase power savings, but at the cost of over-/under provisioning. At the same time, the performance of the Long-Short Term Memory (LSTM) is shown to be inferior to the probabilistic estimators with respect to all error metrics. Finally, we outline the importance of probabilistic, prediction-based characterization for sustainable O-RAN implementations and highlight avenues for future research.
Abstract:Unlike other single-point Artificial Intelligence (AI)-based prediction techniques, such as Long-Short Term Memory (LSTM), probabilistic forecasting techniques (e.g., DeepAR and Transformer) provide a range of possible outcomes and associated probabilities that enable decision makers to make more informed and robust decisions. At the same time, the architecture of Open RAN has emerged as a revolutionary approach for mobile networks, aiming at openness, interoperability and innovation in the ecosystem of RAN. In this paper, we propose the use of probabilistic forecasting techniques as a radio App (rApp) within the Open RAN architecture. We investigate and compare different probabilistic and single-point forecasting methods and algorithms to estimate the utilization and resource demands of Physical Resource Blocks (PRBs) of cellular base stations. Through our evaluations, we demonstrate the numerical advantages of probabilistic forecasting techniques over traditional single-point forecasting methods and show that they are capable of providing more accurate and reliable estimates. In particular, DeepAR clearly outperforms single-point forecasting techniques such as LSTM and Seasonal-Naive (SN) baselines and other probabilistic forecasting techniques such as Simple-Feed-Forward (SFF) and Transformer neural networks.
Abstract:The need for intelligent and efficient resource provisioning for the productive management of resources in real-world scenarios is growing with the evolution of telecommunications towards the 6G era. Technologies such as Open Radio Access Network (O-RAN) can help to build interoperable solutions for the management of complex systems. Probabilistic forecasting, in contrast to deterministic single-point estimators, can offer a different approach to resource allocation by quantifying the uncertainty of the generated predictions. This paper examines the cloud-native aspects of O-RAN together with the radio App (rApp) deployment options. The integration of probabilistic forecasting techniques as a rApp in O-RAN is also emphasized, along with case studies of real-world applications. Through a comparative analysis of forecasting models using the error metric, we show the advantages of Deep Autoregressive Recurrent network (DeepAR) over other deterministic probabilistic estimators. Furthermore, the simplicity of Simple-Feed-Forward (SFF) leads to a fast runtime but does not capture the temporal dependencies of the input data. Finally, we present some aspects related to the practical applicability of cloud-native O-RAN with probabilistic forecasting.